Find a unit vector perpendicular to both $\vec a$ and $\vec b$, where $\vec a = \hat i - 2\hat j + 3\hat k$ and $\vec b = \hat i + 2\hat j - \hat k$.
Answer
Verified
482.1k+ views
Hint: In cross product (or vector product) of two nonzero vectors $\vec a$ and $\vec b$, the resultant vector is perpendicular to both vectors $\vec a$ and $\vec b$.
So you got the hint, to find a vector perpendicular to two nonzero vectors $\vec a$ and $\vec b$, we have to find the cross product of those two vectors.
Remember that the resultant vector may or may not be a unit vector.
Unit vectors are those vectors whose magnitude is 1.
Therefore, find the unit vector by dividing by vector by its magnitude.
Complete step-by-step answer:
Step 1: Find the cross product of $\vec a$ and $\vec b$.
$\hat a \times \hat b$ is the determinant of the matrix $\left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right]$
$\hat a \times \hat b$ $ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right|$
\[ \Rightarrow \hat i\left( {2 - 6} \right) - \hat j\left( { - 1 - 3} \right) + \hat k\left( {2 + 2} \right) \]
\[ \Rightarrow \hat i\left( { - 4} \right) - \hat j\left( { - 4} \right) + \hat k\left( 4 \right) \]
\[ \Rightarrow - 4\hat i + 4\hat j + 4\hat k \]
Let $\vec c = \hat a \times \hat b$
Step 2: Find the unit vector $\hat c$:
\[\vec c = - 4\hat i + 4\hat j + 4\hat k\]
Magnitude of \[\vec c\]:
$
\left| {\vec c} \right| = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( 4 \right)}^2}} \\
\Rightarrow {\text{ }} = \sqrt {16 + 16 + 16} \\
\Rightarrow {\text{ }} = 4\sqrt 3 \\
$
Unit vector $\hat c = \dfrac{{\vec c}}{{\left| {\vec c} \right|}}$
Therefore, $\hat c$ \[ = \dfrac{{ - 4\hat i + 4\hat j + 4\hat k}}{{4\sqrt 3 }}\]
So, $\hat c$\[ = - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\]
Unit vector perpendicular to both $\vec a$ and $\vec b$, where $\vec a = \hat i - 2\hat j + 3\hat k$ and $\vec b = \hat i + 2\hat j - \hat k$ is \[ - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\].
Additional Information:
The unit vector $\hat i$ is along the direction of the x-axis, the unit vector $\hat j$ is along the direction of the y-axis, and the unit vector $\hat k$ is along the direction of the z-axis. Thus, $\hat i,{\text{ }}\hat j{\text{ }}\& {\text{ }}\hat k$ are unit vectors mutually perpendicular to each other.
Note: You can check the final answer by finding the magnitude of the vector $\hat c$.
$\left| {\hat c} \right| = $\[\sqrt {{{\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} \]
\[= \sqrt {\dfrac{1}{3} + \dfrac{1}{3} + \dfrac{1}{3}} \]
\[ = \sqrt {\dfrac{3}{3}} = \sqrt 1 \]
So you got the hint, to find a vector perpendicular to two nonzero vectors $\vec a$ and $\vec b$, we have to find the cross product of those two vectors.
Remember that the resultant vector may or may not be a unit vector.
Unit vectors are those vectors whose magnitude is 1.
Therefore, find the unit vector by dividing by vector by its magnitude.
Complete step-by-step answer:
Step 1: Find the cross product of $\vec a$ and $\vec b$.
$\hat a \times \hat b$ is the determinant of the matrix $\left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right]$
$\hat a \times \hat b$ $ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right|$
\[ \Rightarrow \hat i\left( {2 - 6} \right) - \hat j\left( { - 1 - 3} \right) + \hat k\left( {2 + 2} \right) \]
\[ \Rightarrow \hat i\left( { - 4} \right) - \hat j\left( { - 4} \right) + \hat k\left( 4 \right) \]
\[ \Rightarrow - 4\hat i + 4\hat j + 4\hat k \]
Let $\vec c = \hat a \times \hat b$
Step 2: Find the unit vector $\hat c$:
\[\vec c = - 4\hat i + 4\hat j + 4\hat k\]
Magnitude of \[\vec c\]:
$
\left| {\vec c} \right| = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( 4 \right)}^2}} \\
\Rightarrow {\text{ }} = \sqrt {16 + 16 + 16} \\
\Rightarrow {\text{ }} = 4\sqrt 3 \\
$
Unit vector $\hat c = \dfrac{{\vec c}}{{\left| {\vec c} \right|}}$
Therefore, $\hat c$ \[ = \dfrac{{ - 4\hat i + 4\hat j + 4\hat k}}{{4\sqrt 3 }}\]
So, $\hat c$\[ = - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\]
Unit vector perpendicular to both $\vec a$ and $\vec b$, where $\vec a = \hat i - 2\hat j + 3\hat k$ and $\vec b = \hat i + 2\hat j - \hat k$ is \[ - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\].
Additional Information:
The unit vector $\hat i$ is along the direction of the x-axis, the unit vector $\hat j$ is along the direction of the y-axis, and the unit vector $\hat k$ is along the direction of the z-axis. Thus, $\hat i,{\text{ }}\hat j{\text{ }}\& {\text{ }}\hat k$ are unit vectors mutually perpendicular to each other.
Note: You can check the final answer by finding the magnitude of the vector $\hat c$.
$\left| {\hat c} \right| = $\[\sqrt {{{\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} \]
\[= \sqrt {\dfrac{1}{3} + \dfrac{1}{3} + \dfrac{1}{3}} \]
\[ = \sqrt {\dfrac{3}{3}} = \sqrt 1 \]
\[ = 1 \]
$\hat a \times \hat b = - \left( {\hat b \times \hat a} \right)$. So, if you have calculated $\hat b \times \hat a$$ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&{ - 1} \\
1&{ - 2}&3
\end{array}} \right|$, the resultant vector i.e. \[4\hat i - 4\hat j - 4\hat k\] still be a vector perpendicular to both $\vec a$ and $\vec b$ but in the direction opposite to $\hat a \times \hat b$.
Also, the cross product of two nonzero vectors $\vec a$ and $\vec b$ is the product of the magnitude of both vectors $\vec a$ and $\vec b$, and sine of the angle between them. i.e.
$\hat a \times \hat b = \left| {\hat a} \right|\left| {\hat b} \right|\sin \theta {\text{ }}\hat n$, where $\theta $ is the acute angle between vectors $\vec a$ and $\vec b$. Here $\hat n$ is the unit vector perpendicular to the plane containing vectors $\vec a$ and $\vec b$.
$\hat a \times \hat b = - \left( {\hat b \times \hat a} \right)$. So, if you have calculated $\hat b \times \hat a$$ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&{ - 1} \\
1&{ - 2}&3
\end{array}} \right|$, the resultant vector i.e. \[4\hat i - 4\hat j - 4\hat k\] still be a vector perpendicular to both $\vec a$ and $\vec b$ but in the direction opposite to $\hat a \times \hat b$.
Also, the cross product of two nonzero vectors $\vec a$ and $\vec b$ is the product of the magnitude of both vectors $\vec a$ and $\vec b$, and sine of the angle between them. i.e.
$\hat a \times \hat b = \left| {\hat a} \right|\left| {\hat b} \right|\sin \theta {\text{ }}\hat n$, where $\theta $ is the acute angle between vectors $\vec a$ and $\vec b$. Here $\hat n$ is the unit vector perpendicular to the plane containing vectors $\vec a$ and $\vec b$.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE