Answer
Verified
468.3k+ views
Hint: In cross product (or vector product) of two nonzero vectors $\vec a$ and $\vec b$, the resultant vector is perpendicular to both vectors $\vec a$ and $\vec b$.
So you got the hint, to find a vector perpendicular to two nonzero vectors $\vec a$ and $\vec b$, we have to find the cross product of those two vectors.
Remember that the resultant vector may or may not be a unit vector.
Unit vectors are those vectors whose magnitude is 1.
Therefore, find the unit vector by dividing by vector by its magnitude.
Complete step-by-step answer:
Step 1: Find the cross product of $\vec a$ and $\vec b$.
$\hat a \times \hat b$ is the determinant of the matrix $\left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right]$
$\hat a \times \hat b$ $ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right|$
\[ \Rightarrow \hat i\left( {2 - 6} \right) - \hat j\left( { - 1 - 3} \right) + \hat k\left( {2 + 2} \right) \]
\[ \Rightarrow \hat i\left( { - 4} \right) - \hat j\left( { - 4} \right) + \hat k\left( 4 \right) \]
\[ \Rightarrow - 4\hat i + 4\hat j + 4\hat k \]
Let $\vec c = \hat a \times \hat b$
Step 2: Find the unit vector $\hat c$:
\[\vec c = - 4\hat i + 4\hat j + 4\hat k\]
Magnitude of \[\vec c\]:
$
\left| {\vec c} \right| = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( 4 \right)}^2}} \\
\Rightarrow {\text{ }} = \sqrt {16 + 16 + 16} \\
\Rightarrow {\text{ }} = 4\sqrt 3 \\
$
Unit vector $\hat c = \dfrac{{\vec c}}{{\left| {\vec c} \right|}}$
Therefore, $\hat c$ \[ = \dfrac{{ - 4\hat i + 4\hat j + 4\hat k}}{{4\sqrt 3 }}\]
So, $\hat c$\[ = - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\]
Unit vector perpendicular to both $\vec a$ and $\vec b$, where $\vec a = \hat i - 2\hat j + 3\hat k$ and $\vec b = \hat i + 2\hat j - \hat k$ is \[ - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\].
Additional Information:
The unit vector $\hat i$ is along the direction of the x-axis, the unit vector $\hat j$ is along the direction of the y-axis, and the unit vector $\hat k$ is along the direction of the z-axis. Thus, $\hat i,{\text{ }}\hat j{\text{ }}\& {\text{ }}\hat k$ are unit vectors mutually perpendicular to each other.
Note: You can check the final answer by finding the magnitude of the vector $\hat c$.
$\left| {\hat c} \right| = $\[\sqrt {{{\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} \]
\[= \sqrt {\dfrac{1}{3} + \dfrac{1}{3} + \dfrac{1}{3}} \]
\[ = \sqrt {\dfrac{3}{3}} = \sqrt 1 \]
So you got the hint, to find a vector perpendicular to two nonzero vectors $\vec a$ and $\vec b$, we have to find the cross product of those two vectors.
Remember that the resultant vector may or may not be a unit vector.
Unit vectors are those vectors whose magnitude is 1.
Therefore, find the unit vector by dividing by vector by its magnitude.
Complete step-by-step answer:
Step 1: Find the cross product of $\vec a$ and $\vec b$.
$\hat a \times \hat b$ is the determinant of the matrix $\left[ {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right]$
$\hat a \times \hat b$ $ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&{ - 2}&3 \\
1&2&{ - 1}
\end{array}} \right|$
\[ \Rightarrow \hat i\left( {2 - 6} \right) - \hat j\left( { - 1 - 3} \right) + \hat k\left( {2 + 2} \right) \]
\[ \Rightarrow \hat i\left( { - 4} \right) - \hat j\left( { - 4} \right) + \hat k\left( 4 \right) \]
\[ \Rightarrow - 4\hat i + 4\hat j + 4\hat k \]
Let $\vec c = \hat a \times \hat b$
Step 2: Find the unit vector $\hat c$:
\[\vec c = - 4\hat i + 4\hat j + 4\hat k\]
Magnitude of \[\vec c\]:
$
\left| {\vec c} \right| = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 4 \right)}^2} + {{\left( 4 \right)}^2}} \\
\Rightarrow {\text{ }} = \sqrt {16 + 16 + 16} \\
\Rightarrow {\text{ }} = 4\sqrt 3 \\
$
Unit vector $\hat c = \dfrac{{\vec c}}{{\left| {\vec c} \right|}}$
Therefore, $\hat c$ \[ = \dfrac{{ - 4\hat i + 4\hat j + 4\hat k}}{{4\sqrt 3 }}\]
So, $\hat c$\[ = - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\]
Unit vector perpendicular to both $\vec a$ and $\vec b$, where $\vec a = \hat i - 2\hat j + 3\hat k$ and $\vec b = \hat i + 2\hat j - \hat k$ is \[ - \dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\hat j + \dfrac{1}{{\sqrt 3 }}\hat k\].
Additional Information:
The unit vector $\hat i$ is along the direction of the x-axis, the unit vector $\hat j$ is along the direction of the y-axis, and the unit vector $\hat k$ is along the direction of the z-axis. Thus, $\hat i,{\text{ }}\hat j{\text{ }}\& {\text{ }}\hat k$ are unit vectors mutually perpendicular to each other.
Note: You can check the final answer by finding the magnitude of the vector $\hat c$.
$\left| {\hat c} \right| = $\[\sqrt {{{\left( { - \dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}} \]
\[= \sqrt {\dfrac{1}{3} + \dfrac{1}{3} + \dfrac{1}{3}} \]
\[ = \sqrt {\dfrac{3}{3}} = \sqrt 1 \]
\[ = 1 \]
$\hat a \times \hat b = - \left( {\hat b \times \hat a} \right)$. So, if you have calculated $\hat b \times \hat a$$ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&{ - 1} \\
1&{ - 2}&3
\end{array}} \right|$, the resultant vector i.e. \[4\hat i - 4\hat j - 4\hat k\] still be a vector perpendicular to both $\vec a$ and $\vec b$ but in the direction opposite to $\hat a \times \hat b$.
Also, the cross product of two nonzero vectors $\vec a$ and $\vec b$ is the product of the magnitude of both vectors $\vec a$ and $\vec b$, and sine of the angle between them. i.e.
$\hat a \times \hat b = \left| {\hat a} \right|\left| {\hat b} \right|\sin \theta {\text{ }}\hat n$, where $\theta $ is the acute angle between vectors $\vec a$ and $\vec b$. Here $\hat n$ is the unit vector perpendicular to the plane containing vectors $\vec a$ and $\vec b$.
$\hat a \times \hat b = - \left( {\hat b \times \hat a} \right)$. So, if you have calculated $\hat b \times \hat a$$ = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
1&2&{ - 1} \\
1&{ - 2}&3
\end{array}} \right|$, the resultant vector i.e. \[4\hat i - 4\hat j - 4\hat k\] still be a vector perpendicular to both $\vec a$ and $\vec b$ but in the direction opposite to $\hat a \times \hat b$.
Also, the cross product of two nonzero vectors $\vec a$ and $\vec b$ is the product of the magnitude of both vectors $\vec a$ and $\vec b$, and sine of the angle between them. i.e.
$\hat a \times \hat b = \left| {\hat a} \right|\left| {\hat b} \right|\sin \theta {\text{ }}\hat n$, where $\theta $ is the acute angle between vectors $\vec a$ and $\vec b$. Here $\hat n$ is the unit vector perpendicular to the plane containing vectors $\vec a$ and $\vec b$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE