
Find all unit vectors orthogonal to both the vectors given by $(1,2, - 1)$ and $(3,3, - 4)$?
Answer
553.5k+ views
Hint: The given question requires us to find all unit vectors perpendicular to both the vectors given in the problem. This can be done easily by applying the concepts of vectors as the cross product of two vectors is always perpendicular to both the vectors. Unit vectors can easily be found by dividing a vector by its magnitude.
Complete step by step solution:
Let the required vector be given by $\vec c$.
In the given problem, we are required to first find the position vectors corresponding to the given coordinates.
Position vector of given point $(1,2, - 1)$ is \[\vec a = \hat i + 2\hat j - \hat k\]
Position vector of given point $(3,3, - 4)$is $\vec b = 3\hat i + 3\hat j - 4\hat k$
Now, $\vec c$is orthogonal to both $\vec a$and$\vec b$.
Thus, $\vec c$$ = \vec a \times \vec b$. Now, we have to find the cross product of two vectors. Cross product is found by solving the determinant of coefficients of the rectangular components of the two vectors.
Now, computing the determinant along the first row, we get,
$\vec c$$ = \left| {\text{ }}\hat i{\text{ }}\hat j{\text{ }}\hat k \\
{\text{ }}1{\text{ }}2{\text{ }} - 1 \\
{\text{ }}3{\text{ }}3{\text{ }} - 4 \\ \right|$
$\vec c$$ = \hat i( - 8 - ( - 3)) - \hat j( - 4 - ( - 3)) + \hat k(3 - 6)$
$ \Rightarrow \vec c$$ = \hat i( - 5) - \hat j( - 1) + \hat k( - 3)$
$ \Rightarrow \vec c$$ = - 5\hat i + \hat j - 3\hat k$
Now the required unit vector is $\hat c$. We will find $\hat c$ by dividing $\vec c$ by its magnitude.
Thus, $\hat c = \dfrac{{ - 5\hat i + \hat j - 3\hat k}}{{\sqrt {{{( - 5)}^2} + {{(1)}^2} + {{( - 3)}^2}} }}$
$ \Rightarrow \hat c = \dfrac{{ - 5\hat i + \hat j - 3\hat k}}{{\sqrt {35} }}$
$ \Rightarrow \hat c = \dfrac{{ - 5\hat i}}{{\sqrt {35} }} + \dfrac{{\hat j}}{{\sqrt {35} }} - \dfrac{{3\hat k}}{{\sqrt {35} }}$
So, unit vector perpendicular to both the vectors given by $(1,2, - 1)$ and $(3,3, - 4)$ is $\left( {\dfrac{{ - 5\hat i}}{{\sqrt {35} }} + \dfrac{{\hat j}}{{\sqrt {35} }} - \dfrac{{3\hat k}}{{\sqrt {35} }}} \right)$.
Note: Such type of questions involves concepts of cross product of two vectors. We need to have a strong grip on topics like Vector algebra and Dot and cross product of two vectors so as to solve typical questions from these topics.
Complete step by step solution:
Let the required vector be given by $\vec c$.
In the given problem, we are required to first find the position vectors corresponding to the given coordinates.
Position vector of given point $(1,2, - 1)$ is \[\vec a = \hat i + 2\hat j - \hat k\]
Position vector of given point $(3,3, - 4)$is $\vec b = 3\hat i + 3\hat j - 4\hat k$
Now, $\vec c$is orthogonal to both $\vec a$and$\vec b$.
Thus, $\vec c$$ = \vec a \times \vec b$. Now, we have to find the cross product of two vectors. Cross product is found by solving the determinant of coefficients of the rectangular components of the two vectors.
Now, computing the determinant along the first row, we get,
$\vec c$$ = \left| {\text{ }}\hat i{\text{ }}\hat j{\text{ }}\hat k \\
{\text{ }}1{\text{ }}2{\text{ }} - 1 \\
{\text{ }}3{\text{ }}3{\text{ }} - 4 \\ \right|$
$\vec c$$ = \hat i( - 8 - ( - 3)) - \hat j( - 4 - ( - 3)) + \hat k(3 - 6)$
$ \Rightarrow \vec c$$ = \hat i( - 5) - \hat j( - 1) + \hat k( - 3)$
$ \Rightarrow \vec c$$ = - 5\hat i + \hat j - 3\hat k$
Now the required unit vector is $\hat c$. We will find $\hat c$ by dividing $\vec c$ by its magnitude.
Thus, $\hat c = \dfrac{{ - 5\hat i + \hat j - 3\hat k}}{{\sqrt {{{( - 5)}^2} + {{(1)}^2} + {{( - 3)}^2}} }}$
$ \Rightarrow \hat c = \dfrac{{ - 5\hat i + \hat j - 3\hat k}}{{\sqrt {35} }}$
$ \Rightarrow \hat c = \dfrac{{ - 5\hat i}}{{\sqrt {35} }} + \dfrac{{\hat j}}{{\sqrt {35} }} - \dfrac{{3\hat k}}{{\sqrt {35} }}$
So, unit vector perpendicular to both the vectors given by $(1,2, - 1)$ and $(3,3, - 4)$ is $\left( {\dfrac{{ - 5\hat i}}{{\sqrt {35} }} + \dfrac{{\hat j}}{{\sqrt {35} }} - \dfrac{{3\hat k}}{{\sqrt {35} }}} \right)$.
Note: Such type of questions involves concepts of cross product of two vectors. We need to have a strong grip on topics like Vector algebra and Dot and cross product of two vectors so as to solve typical questions from these topics.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

