Find coordinates of the center of mass of a quarter ring of radius placed in the first quadrant of a Cartesian coordinate system, with center at the origin.
Answer
Verified
420.4k+ views
Hint: Quarter ring indicates that we need to find the center of mass for one-fourth of the ring placed in the first quadrant. We will find the general expression of coordinates of a small part of the ring. Finally, we will integrate it to find the required coordinates using the basic formula.
Formula Used:
${{X}_{CM}}=\dfrac{1}{M}\int{xdm}$
${{Y}_{CM}}=\dfrac{1}{M}\int{ydm}$
Complete step-by-step solution:
Here, we need to find the coordinates of the centre of mass of one fourth of a ring placed in the first quadrant. We will assume the origin as the centre of the circle, of which the ring is a part of, and then we can draw the diagram as follows:
Here, consider a one fourth ring present in the first quadrant having a total mass $M$ and radius $R$ and subtending a total angle of $\dfrac{\pi }{2}$ at the origin.
To find the centre of mass, consider a small portion of the ring at an angle $\theta $ from the x-axis. Let the mass of this portion be $dm$ of length $l$ and the angle subtended by this portion at the origin be $d\theta $.
Here, we will find the $x$ as well as $y$ component of the centre of mass and hence the coordinates of centre of mass.
Here, the total mass $M$ subtends an angle of $\dfrac{\pi }{2}$. Also, the mass $dm$ subtends an angle of $d\theta $
Hence, the mass $dm$can be written as:
$dm=\dfrac{M}{\left( \pi /2 \right)}\times d\theta $ ----(i)
Also, the length of the mass $dm$ can be written as:
$d\theta =\dfrac{l}{R}$
$\Rightarrow l=Rd\theta $ ----(ii)
Also, at any angle $\theta $ the general x coordinate and y coordinate can be written as:
$x=R\cos \theta $
$y=R\sin \theta $
For x coordinate:
${{X}_{CM}}=\dfrac{1}{M}\int{xdm}$
$\Rightarrow {{X}_{CM}}=\dfrac{1}{M}\int{R\cos \theta dm}$
From equation (i)
$\Rightarrow {{X}_{CM}}=\dfrac{1}{M}\int{R\cos \theta \dfrac{M}{(\pi /2)}\times d\theta }$
$\Rightarrow {{X}_{CM}}=\dfrac{2R}{\pi }\int\limits_{0}^{\pi /2}{\cos \theta d\theta }$
$\Rightarrow {{X}_{CM}}=\dfrac{2R}{\pi }$
For y coordinate:
${{Y}_{CM}}=\dfrac{1}{M}\int{ydm}$
$\Rightarrow {{Y}_{CM}}=\dfrac{1}{M}\int{R\sin \theta dm}$
From equation (i)
${{Y}_{CM}}=\dfrac{1}{M}\int{R\sin \theta \dfrac{M}{(\pi /2)}d\theta }$
$\Rightarrow {{Y}_{CM}}=\dfrac{2R}{\pi }\int\limits_{0}^{\pi /2}{\sin \theta d\theta }$
$\Rightarrow {{Y}_{CM}}=\dfrac{2R}{\pi }$
Hence, the coordinates of the centre of mass of a quarter ring placed in the first quadrant is $({{X}_{CM}},{{Y}_{CM}})=(\dfrac{2R}{\pi },\dfrac{2R}{\pi })$.
Note: To find centre of mass, always take a small mass into consideration. Find out the general equation for the x and y coordinate for that small part. Then use the basic formula to find the coordinates of the centre of mass.
Formula Used:
${{X}_{CM}}=\dfrac{1}{M}\int{xdm}$
${{Y}_{CM}}=\dfrac{1}{M}\int{ydm}$
Complete step-by-step solution:
Here, we need to find the coordinates of the centre of mass of one fourth of a ring placed in the first quadrant. We will assume the origin as the centre of the circle, of which the ring is a part of, and then we can draw the diagram as follows:
Here, consider a one fourth ring present in the first quadrant having a total mass $M$ and radius $R$ and subtending a total angle of $\dfrac{\pi }{2}$ at the origin.
To find the centre of mass, consider a small portion of the ring at an angle $\theta $ from the x-axis. Let the mass of this portion be $dm$ of length $l$ and the angle subtended by this portion at the origin be $d\theta $.
Here, we will find the $x$ as well as $y$ component of the centre of mass and hence the coordinates of centre of mass.
Here, the total mass $M$ subtends an angle of $\dfrac{\pi }{2}$. Also, the mass $dm$ subtends an angle of $d\theta $
Hence, the mass $dm$can be written as:
$dm=\dfrac{M}{\left( \pi /2 \right)}\times d\theta $ ----(i)
Also, the length of the mass $dm$ can be written as:
$d\theta =\dfrac{l}{R}$
$\Rightarrow l=Rd\theta $ ----(ii)
Also, at any angle $\theta $ the general x coordinate and y coordinate can be written as:
$x=R\cos \theta $
$y=R\sin \theta $
For x coordinate:
${{X}_{CM}}=\dfrac{1}{M}\int{xdm}$
$\Rightarrow {{X}_{CM}}=\dfrac{1}{M}\int{R\cos \theta dm}$
From equation (i)
$\Rightarrow {{X}_{CM}}=\dfrac{1}{M}\int{R\cos \theta \dfrac{M}{(\pi /2)}\times d\theta }$
$\Rightarrow {{X}_{CM}}=\dfrac{2R}{\pi }\int\limits_{0}^{\pi /2}{\cos \theta d\theta }$
$\Rightarrow {{X}_{CM}}=\dfrac{2R}{\pi }$
For y coordinate:
${{Y}_{CM}}=\dfrac{1}{M}\int{ydm}$
$\Rightarrow {{Y}_{CM}}=\dfrac{1}{M}\int{R\sin \theta dm}$
From equation (i)
${{Y}_{CM}}=\dfrac{1}{M}\int{R\sin \theta \dfrac{M}{(\pi /2)}d\theta }$
$\Rightarrow {{Y}_{CM}}=\dfrac{2R}{\pi }\int\limits_{0}^{\pi /2}{\sin \theta d\theta }$
$\Rightarrow {{Y}_{CM}}=\dfrac{2R}{\pi }$
Hence, the coordinates of the centre of mass of a quarter ring placed in the first quadrant is $({{X}_{CM}},{{Y}_{CM}})=(\dfrac{2R}{\pi },\dfrac{2R}{\pi })$.
Note: To find centre of mass, always take a small mass into consideration. Find out the general equation for the x and y coordinate for that small part. Then use the basic formula to find the coordinates of the centre of mass.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
How many valence electrons does nitrogen have class 11 chemistry CBSE