
Find \[cosec 6{0^ \circ }\], \[sec 6{0^ \circ }\], and \[\cot 6{0^ \circ }\]?
Answer
524.4k+ views
Hint: Here in this question, we have to find the value of trigonometric ratio cosecant, secant and cotangent at an angle of \[6{0^ \circ }\] or \[\dfrac{\pi }{3}\]. This can be found by using equilateral triangles and Pythagoras identity. And later by using the definition of cosecant and cotangent ratios of trigonometric on simplification, we get the required solution.
Complete step-by-step answer:
Let us calculate the trigonometric ratios cosecant, secant and cotangent of \[{60^ \circ }\] which is equal to \[{\dfrac{\pi }{3}^c}\] i.e., \[{\dfrac{\pi }{3}^c} = {60^ \circ }\].
Consider an equilateral triangle ABC. Since each angle in an equilateral triangle is 60°, therefore, \[\left| \!{\underline {\,
A \,}} \right. = \left| \!{\underline {\,
B \,}} \right. = \left| \!{\underline {\,
C \,}} \right. = {60^ \circ }\]
Draw the perpendicular AD from A to the side BC.
\[\therefore \,\,\Delta \,ABD \cong \Delta \,ACD\]
\[\Delta \,ABD\] is a right triangle, right-angled at D with \[\left| \!{\underline {\,
{BAD} \,}} \right. = {30^ \circ }\] and \[\left| \!{\underline {\,
{ABD} \,}} \right. = {60^ \circ }\]
For finding the trigonometric ratios, we need to know the lengths of the sides of the triangle. So, let us suppose that \[AB = AC = BC = 2a\]. Then,
\[ \Rightarrow \,BD = \dfrac{1}{2}BC\]
\[ \Rightarrow \,BD = \dfrac{1}{2}BC\]
\[ \Rightarrow \,BD = \dfrac{1}{2} \cdot 2a\]
\[ \Rightarrow \,BD = a\]
Now, the height of the \[\Delta \,ABC\] is AD then by Pythagoras theorem i.e., \[A{B^2} = A{D^2} + B{D^2}\], then
\[ \Rightarrow \,\,A{D^2} = A{B^2} - B{D^2}\]
\[ \Rightarrow \,\,A{D^2} = {\left( {2a} \right)^2} - {\left( a \right)^2}\]
\[ \Rightarrow \,\,A{D^2} = 4{a^2} - {a^2}\]
\[ \Rightarrow \,\,A{D^2} = 3{a^2}\]
\[ \Rightarrow \,\,AD = \sqrt {3{a^2}} \]
On simplification, we get
\[ \Rightarrow \,\,AD = \sqrt 3 \,a\]
In \[\Delta \,ABD\], for the angle \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\], side AD is a opposite side, AB is hypotenuse and BD acts as a adjacent side, then
Now, use the definition of trigonometric ratios
Definition of sine ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[\sin \left( {6{0^ \circ }} \right) = \dfrac{{Opposite}}{{Hypotenuse}}\]
\[ \Rightarrow \,\sin \left( {6{0^ \circ }} \right) = \dfrac{{AD}}{{AB}}\]
\[ \Rightarrow \,\sin \left( {{{60}^ \circ }} \right) = \dfrac{{\sqrt 3 a}}{{2a}}\]
On simplification, we get
\[ \Rightarrow \,\sin \left( {{{60}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2}\]
Definition of cosine ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[\cos \left( {{{60}^ \circ }} \right) = \dfrac{{Adjacent}}{{Hypotenuse}}\]
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{{BD}}{{AB}}\]
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{a}{{2a}}\]
On simplification, we get
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2}\]
As we know, by the definition of trigonometric ratios cosecant is a reciprocal of sine.
Cosecant ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[cosec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sin \left( {{{60}^ \circ }} \right)}}\]
On substituting value of\[\sin \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,cosec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}\]
On simplification, we get
\[ \Rightarrow \,\,cosec\left( {{{60}^ \circ }} \right) = \dfrac{2}{{\sqrt 3 }}\]
Similarly, secant is a reciprocal of cosine, then
\[sec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\cos \left( {{{60}^ \circ }} \right)}}\]
On substituting value of \[\cos \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,sec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\dfrac{1}{2}}}\]
On simplification, we get
\[ \Rightarrow \,\,sec\left( {{{60}^ \circ }} \right) = 2\]
Again, by the definition we know, cotangent is the ratio between the cosine and sine, then
cotangent ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
On substituting value of \[\cos \left( {{{60}^ \circ }} \right)\] and \[\sin \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{{\cos \left( {{{60}^ \circ }} \right)}}{{\sin \left( {{{60}^ \circ }} \right)}}\]
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{{\dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}\]
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{2} \times \dfrac{2}{{\sqrt 3 }}\]
On simplification, we get
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\]
Hence, the value of \[cosec\left( {{{60}^ \circ }} \right) = \dfrac{2}{{\sqrt 3 }}\], \[sec\left( {{{60}^ \circ }} \right) = 2\] and \[\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\].
Note: When solving these type of questions, first we have to know the definition of six trigonometric ratios i.e., sine, cosine, tangent, secant, cosecant and cotangent and know the property of equilateral triangle i.e., all sides and angles of equilateral triangle is equal and know the formula of Pythagoras theorem i.e., \[hy{p^2} = ad{j^2} + op{p^2}\].x
Complete step-by-step answer:
Let us calculate the trigonometric ratios cosecant, secant and cotangent of \[{60^ \circ }\] which is equal to \[{\dfrac{\pi }{3}^c}\] i.e., \[{\dfrac{\pi }{3}^c} = {60^ \circ }\].
Consider an equilateral triangle ABC. Since each angle in an equilateral triangle is 60°, therefore, \[\left| \!{\underline {\,
A \,}} \right. = \left| \!{\underline {\,
B \,}} \right. = \left| \!{\underline {\,
C \,}} \right. = {60^ \circ }\]
Draw the perpendicular AD from A to the side BC.
\[\therefore \,\,\Delta \,ABD \cong \Delta \,ACD\]
\[\Delta \,ABD\] is a right triangle, right-angled at D with \[\left| \!{\underline {\,
{BAD} \,}} \right. = {30^ \circ }\] and \[\left| \!{\underline {\,
{ABD} \,}} \right. = {60^ \circ }\]
For finding the trigonometric ratios, we need to know the lengths of the sides of the triangle. So, let us suppose that \[AB = AC = BC = 2a\]. Then,
\[ \Rightarrow \,BD = \dfrac{1}{2}BC\]
\[ \Rightarrow \,BD = \dfrac{1}{2}BC\]
\[ \Rightarrow \,BD = \dfrac{1}{2} \cdot 2a\]
\[ \Rightarrow \,BD = a\]
Now, the height of the \[\Delta \,ABC\] is AD then by Pythagoras theorem i.e., \[A{B^2} = A{D^2} + B{D^2}\], then
\[ \Rightarrow \,\,A{D^2} = A{B^2} - B{D^2}\]
\[ \Rightarrow \,\,A{D^2} = {\left( {2a} \right)^2} - {\left( a \right)^2}\]
\[ \Rightarrow \,\,A{D^2} = 4{a^2} - {a^2}\]
\[ \Rightarrow \,\,A{D^2} = 3{a^2}\]
\[ \Rightarrow \,\,AD = \sqrt {3{a^2}} \]
On simplification, we get
\[ \Rightarrow \,\,AD = \sqrt 3 \,a\]
In \[\Delta \,ABD\], for the angle \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\], side AD is a opposite side, AB is hypotenuse and BD acts as a adjacent side, then
Now, use the definition of trigonometric ratios
Definition of sine ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[\sin \left( {6{0^ \circ }} \right) = \dfrac{{Opposite}}{{Hypotenuse}}\]
\[ \Rightarrow \,\sin \left( {6{0^ \circ }} \right) = \dfrac{{AD}}{{AB}}\]
\[ \Rightarrow \,\sin \left( {{{60}^ \circ }} \right) = \dfrac{{\sqrt 3 a}}{{2a}}\]
On simplification, we get
\[ \Rightarrow \,\sin \left( {{{60}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2}\]
Definition of cosine ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[\cos \left( {{{60}^ \circ }} \right) = \dfrac{{Adjacent}}{{Hypotenuse}}\]
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{{BD}}{{AB}}\]
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{a}{{2a}}\]
On simplification, we get
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2}\]
As we know, by the definition of trigonometric ratios cosecant is a reciprocal of sine.
Cosecant ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[cosec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sin \left( {{{60}^ \circ }} \right)}}\]
On substituting value of\[\sin \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,cosec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}\]
On simplification, we get
\[ \Rightarrow \,\,cosec\left( {{{60}^ \circ }} \right) = \dfrac{2}{{\sqrt 3 }}\]
Similarly, secant is a reciprocal of cosine, then
\[sec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\cos \left( {{{60}^ \circ }} \right)}}\]
On substituting value of \[\cos \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,sec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\dfrac{1}{2}}}\]
On simplification, we get
\[ \Rightarrow \,\,sec\left( {{{60}^ \circ }} \right) = 2\]
Again, by the definition we know, cotangent is the ratio between the cosine and sine, then
cotangent ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
On substituting value of \[\cos \left( {{{60}^ \circ }} \right)\] and \[\sin \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{{\cos \left( {{{60}^ \circ }} \right)}}{{\sin \left( {{{60}^ \circ }} \right)}}\]
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{{\dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}\]
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{2} \times \dfrac{2}{{\sqrt 3 }}\]
On simplification, we get
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\]
Hence, the value of \[cosec\left( {{{60}^ \circ }} \right) = \dfrac{2}{{\sqrt 3 }}\], \[sec\left( {{{60}^ \circ }} \right) = 2\] and \[\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\].
Note: When solving these type of questions, first we have to know the definition of six trigonometric ratios i.e., sine, cosine, tangent, secant, cosecant and cotangent and know the property of equilateral triangle i.e., all sides and angles of equilateral triangle is equal and know the formula of Pythagoras theorem i.e., \[hy{p^2} = ad{j^2} + op{p^2}\].x
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

