![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Find \[cosec 6{0^ \circ }\], \[sec 6{0^ \circ }\], and \[\cot 6{0^ \circ }\]?
Answer
415.2k+ views
Hint: Here in this question, we have to find the value of trigonometric ratio cosecant, secant and cotangent at an angle of \[6{0^ \circ }\] or \[\dfrac{\pi }{3}\]. This can be found by using equilateral triangles and Pythagoras identity. And later by using the definition of cosecant and cotangent ratios of trigonometric on simplification, we get the required solution.
Complete step-by-step answer:
Let us calculate the trigonometric ratios cosecant, secant and cotangent of \[{60^ \circ }\] which is equal to \[{\dfrac{\pi }{3}^c}\] i.e., \[{\dfrac{\pi }{3}^c} = {60^ \circ }\].
Consider an equilateral triangle ABC. Since each angle in an equilateral triangle is 60°, therefore, \[\left| \!{\underline {\,
A \,}} \right. = \left| \!{\underline {\,
B \,}} \right. = \left| \!{\underline {\,
C \,}} \right. = {60^ \circ }\]
Draw the perpendicular AD from A to the side BC.
\[\therefore \,\,\Delta \,ABD \cong \Delta \,ACD\]
\[\Delta \,ABD\] is a right triangle, right-angled at D with \[\left| \!{\underline {\,
{BAD} \,}} \right. = {30^ \circ }\] and \[\left| \!{\underline {\,
{ABD} \,}} \right. = {60^ \circ }\]
For finding the trigonometric ratios, we need to know the lengths of the sides of the triangle. So, let us suppose that \[AB = AC = BC = 2a\]. Then,
\[ \Rightarrow \,BD = \dfrac{1}{2}BC\]
\[ \Rightarrow \,BD = \dfrac{1}{2}BC\]
\[ \Rightarrow \,BD = \dfrac{1}{2} \cdot 2a\]
\[ \Rightarrow \,BD = a\]
Now, the height of the \[\Delta \,ABC\] is AD then by Pythagoras theorem i.e., \[A{B^2} = A{D^2} + B{D^2}\], then
\[ \Rightarrow \,\,A{D^2} = A{B^2} - B{D^2}\]
\[ \Rightarrow \,\,A{D^2} = {\left( {2a} \right)^2} - {\left( a \right)^2}\]
\[ \Rightarrow \,\,A{D^2} = 4{a^2} - {a^2}\]
\[ \Rightarrow \,\,A{D^2} = 3{a^2}\]
\[ \Rightarrow \,\,AD = \sqrt {3{a^2}} \]
On simplification, we get
\[ \Rightarrow \,\,AD = \sqrt 3 \,a\]
In \[\Delta \,ABD\], for the angle \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\], side AD is a opposite side, AB is hypotenuse and BD acts as a adjacent side, then
Now, use the definition of trigonometric ratios
Definition of sine ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[\sin \left( {6{0^ \circ }} \right) = \dfrac{{Opposite}}{{Hypotenuse}}\]
\[ \Rightarrow \,\sin \left( {6{0^ \circ }} \right) = \dfrac{{AD}}{{AB}}\]
\[ \Rightarrow \,\sin \left( {{{60}^ \circ }} \right) = \dfrac{{\sqrt 3 a}}{{2a}}\]
On simplification, we get
\[ \Rightarrow \,\sin \left( {{{60}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2}\]
Definition of cosine ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[\cos \left( {{{60}^ \circ }} \right) = \dfrac{{Adjacent}}{{Hypotenuse}}\]
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{{BD}}{{AB}}\]
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{a}{{2a}}\]
On simplification, we get
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2}\]
As we know, by the definition of trigonometric ratios cosecant is a reciprocal of sine.
Cosecant ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[cosec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sin \left( {{{60}^ \circ }} \right)}}\]
On substituting value of\[\sin \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,cosec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}\]
On simplification, we get
\[ \Rightarrow \,\,cosec\left( {{{60}^ \circ }} \right) = \dfrac{2}{{\sqrt 3 }}\]
Similarly, secant is a reciprocal of cosine, then
\[sec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\cos \left( {{{60}^ \circ }} \right)}}\]
On substituting value of \[\cos \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,sec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\dfrac{1}{2}}}\]
On simplification, we get
\[ \Rightarrow \,\,sec\left( {{{60}^ \circ }} \right) = 2\]
Again, by the definition we know, cotangent is the ratio between the cosine and sine, then
cotangent ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
On substituting value of \[\cos \left( {{{60}^ \circ }} \right)\] and \[\sin \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{{\cos \left( {{{60}^ \circ }} \right)}}{{\sin \left( {{{60}^ \circ }} \right)}}\]
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{{\dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}\]
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{2} \times \dfrac{2}{{\sqrt 3 }}\]
On simplification, we get
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\]
Hence, the value of \[cosec\left( {{{60}^ \circ }} \right) = \dfrac{2}{{\sqrt 3 }}\], \[sec\left( {{{60}^ \circ }} \right) = 2\] and \[\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\].
Note: When solving these type of questions, first we have to know the definition of six trigonometric ratios i.e., sine, cosine, tangent, secant, cosecant and cotangent and know the property of equilateral triangle i.e., all sides and angles of equilateral triangle is equal and know the formula of Pythagoras theorem i.e., \[hy{p^2} = ad{j^2} + op{p^2}\].x
Complete step-by-step answer:
![seo images](https://www.vedantu.com/question-sets/079c285c-4465-4624-8cab-67dd9499cb397107186430807322016.png)
Let us calculate the trigonometric ratios cosecant, secant and cotangent of \[{60^ \circ }\] which is equal to \[{\dfrac{\pi }{3}^c}\] i.e., \[{\dfrac{\pi }{3}^c} = {60^ \circ }\].
Consider an equilateral triangle ABC. Since each angle in an equilateral triangle is 60°, therefore, \[\left| \!{\underline {\,
A \,}} \right. = \left| \!{\underline {\,
B \,}} \right. = \left| \!{\underline {\,
C \,}} \right. = {60^ \circ }\]
Draw the perpendicular AD from A to the side BC.
\[\therefore \,\,\Delta \,ABD \cong \Delta \,ACD\]
\[\Delta \,ABD\] is a right triangle, right-angled at D with \[\left| \!{\underline {\,
{BAD} \,}} \right. = {30^ \circ }\] and \[\left| \!{\underline {\,
{ABD} \,}} \right. = {60^ \circ }\]
For finding the trigonometric ratios, we need to know the lengths of the sides of the triangle. So, let us suppose that \[AB = AC = BC = 2a\]. Then,
\[ \Rightarrow \,BD = \dfrac{1}{2}BC\]
\[ \Rightarrow \,BD = \dfrac{1}{2}BC\]
\[ \Rightarrow \,BD = \dfrac{1}{2} \cdot 2a\]
\[ \Rightarrow \,BD = a\]
Now, the height of the \[\Delta \,ABC\] is AD then by Pythagoras theorem i.e., \[A{B^2} = A{D^2} + B{D^2}\], then
\[ \Rightarrow \,\,A{D^2} = A{B^2} - B{D^2}\]
\[ \Rightarrow \,\,A{D^2} = {\left( {2a} \right)^2} - {\left( a \right)^2}\]
\[ \Rightarrow \,\,A{D^2} = 4{a^2} - {a^2}\]
\[ \Rightarrow \,\,A{D^2} = 3{a^2}\]
\[ \Rightarrow \,\,AD = \sqrt {3{a^2}} \]
On simplification, we get
\[ \Rightarrow \,\,AD = \sqrt 3 \,a\]
In \[\Delta \,ABD\], for the angle \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\], side AD is a opposite side, AB is hypotenuse and BD acts as a adjacent side, then
Now, use the definition of trigonometric ratios
Definition of sine ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[\sin \left( {6{0^ \circ }} \right) = \dfrac{{Opposite}}{{Hypotenuse}}\]
\[ \Rightarrow \,\sin \left( {6{0^ \circ }} \right) = \dfrac{{AD}}{{AB}}\]
\[ \Rightarrow \,\sin \left( {{{60}^ \circ }} \right) = \dfrac{{\sqrt 3 a}}{{2a}}\]
On simplification, we get
\[ \Rightarrow \,\sin \left( {{{60}^ \circ }} \right) = \dfrac{{\sqrt 3 }}{2}\]
Definition of cosine ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[\cos \left( {{{60}^ \circ }} \right) = \dfrac{{Adjacent}}{{Hypotenuse}}\]
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{{BD}}{{AB}}\]
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{a}{{2a}}\]
On simplification, we get
\[ \Rightarrow \,\cos \left( {{{60}^ \circ }} \right) = \dfrac{1}{2}\]
As we know, by the definition of trigonometric ratios cosecant is a reciprocal of sine.
Cosecant ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
\[cosec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sin \left( {{{60}^ \circ }} \right)}}\]
On substituting value of\[\sin \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,cosec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\dfrac{{\sqrt 3 }}{2}}}\]
On simplification, we get
\[ \Rightarrow \,\,cosec\left( {{{60}^ \circ }} \right) = \dfrac{2}{{\sqrt 3 }}\]
Similarly, secant is a reciprocal of cosine, then
\[sec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\cos \left( {{{60}^ \circ }} \right)}}\]
On substituting value of \[\cos \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,sec\left( {{{60}^ \circ }} \right) = \dfrac{1}{{\dfrac{1}{2}}}\]
On simplification, we get
\[ \Rightarrow \,\,sec\left( {{{60}^ \circ }} \right) = 2\]
Again, by the definition we know, cotangent is the ratio between the cosine and sine, then
cotangent ratio at \[\left| \!{\underline {\,
A \,}} \right. = {60^ \circ } = \dfrac{\pi }{3}\] is:
On substituting value of \[\cos \left( {{{60}^ \circ }} \right)\] and \[\sin \left( {{{60}^ \circ }} \right)\], we have
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{{\cos \left( {{{60}^ \circ }} \right)}}{{\sin \left( {{{60}^ \circ }} \right)}}\]
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{{\dfrac{1}{2}}}{{\dfrac{{\sqrt 3 }}{2}}}\]
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{2} \times \dfrac{2}{{\sqrt 3 }}\]
On simplification, we get
\[ \Rightarrow \,\,\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\]
Hence, the value of \[cosec\left( {{{60}^ \circ }} \right) = \dfrac{2}{{\sqrt 3 }}\], \[sec\left( {{{60}^ \circ }} \right) = 2\] and \[\cot \left( {{{60}^ \circ }} \right) = \dfrac{1}{{\sqrt 3 }}\].
Note: When solving these type of questions, first we have to know the definition of six trigonometric ratios i.e., sine, cosine, tangent, secant, cosecant and cotangent and know the property of equilateral triangle i.e., all sides and angles of equilateral triangle is equal and know the formula of Pythagoras theorem i.e., \[hy{p^2} = ad{j^2} + op{p^2}\].x
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the value of x if the mode of the following data class 11 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
10 examples of friction in our daily life
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Prokaryotic Cells and Eukaryotic Cells
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
State and prove Bernoullis theorem class 11 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What organs are located on the left side of your body class 11 biology CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The combining capacity of an element is known as i class 11 chemistry CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)