How to find dimensions of a rectangle with a perimeter of \[24\]m?
Answer
Verified
447k+ views
Hint: We define rectangle as a special parallelogram . Rectangle has some special properties. A rectangle is a quadrilateral in which opposite sides are equal and all four angles are equal with each of its four angles is a right angle. A rectangle has two diagonals and both the diagonals bisect each other. We define the perimeter of a two-dimensional figure as the total length of all the sides which bind the figure. We have different formulas for finding the perimeter of different figures.
Complete step by step solution:
The perimeter of the given rectangle is \[24\]m.
We don't know anything about the dimensions of the rectangle, so we assume the length and breadth of the rectangle to be some variation.
Let the length of the rectangle be $l$.
Let the breadth of the rectangle be $b$.
According to the formula for the perimeter of a rectangle ,
\[Perimeter=2\left( length+breadth \right)\]
We can put the values in the formula to get
\[24=2\left( l+b \right)\]
On solving this equation , we get
\[\begin{array}{*{35}{l}}
l+b=24/2 \\
l+b=12 \\
b=12-l \\
\end{array}\]
Hence we get the dimensions of the rectangle as
Length is $l$m
And breadth is $(12-l)$m.
Note:
We can find the value of length and breadth as constants if we are given the value of either the length or the breadth of the rectangle. We can also find the value of length and breadth if we are given the area of the rectangle. Then it will become a linear equation in two variables and we can solve both the equations to get the dimensions of the rectangle. We should also note that the formula for finding the perimeter is different for different categories of figures.
Complete step by step solution:
The perimeter of the given rectangle is \[24\]m.
We don't know anything about the dimensions of the rectangle, so we assume the length and breadth of the rectangle to be some variation.
Let the length of the rectangle be $l$.
Let the breadth of the rectangle be $b$.
According to the formula for the perimeter of a rectangle ,
\[Perimeter=2\left( length+breadth \right)\]
We can put the values in the formula to get
\[24=2\left( l+b \right)\]
On solving this equation , we get
\[\begin{array}{*{35}{l}}
l+b=24/2 \\
l+b=12 \\
b=12-l \\
\end{array}\]
Hence we get the dimensions of the rectangle as
Length is $l$m
And breadth is $(12-l)$m.
Note:
We can find the value of length and breadth as constants if we are given the value of either the length or the breadth of the rectangle. We can also find the value of length and breadth if we are given the area of the rectangle. Then it will become a linear equation in two variables and we can solve both the equations to get the dimensions of the rectangle. We should also note that the formula for finding the perimeter is different for different categories of figures.
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE
The length and width of a rectangle are in ratio of class 7 maths CBSE
The ratio of the income to the expenditure of a family class 7 maths CBSE
How do you write 025 million in scientific notatio class 7 maths CBSE
How do you convert 295 meters per second to kilometers class 7 maths CBSE
Write the following in Roman numerals 25819 class 7 maths CBSE
Trending doubts
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE
What were the major teachings of Baba Guru Nanak class 7 social science CBSE
What was the approximate time period of the Indus Valley class 7 social science CBSE
AIM To prepare stained temporary mount of onion peel class 7 biology CBSE