
Find domain of the function \[f\left( x \right)=\sqrt{{{\log }_{x}}\left( \cos 2\pi x \right)}\]?
Answer
571.8k+ views
Hint: We start solving the problem by applying the property that the function $\sqrt{g\left( x \right)}$ is valid if and only if the values of $g\left( x \right)\ge 0$ for the function \[{{\log }_{x}}\left( \cos 2\pi x \right)\]. We then recall the properties of logarithmic function \[{{\log }_{a}}b=\left\{ \begin{array}{*{35}{l}}
+ve,\text{ if }a > 1,b > 1 \\
+ve,\text{ if }0 < a < 1,0 < b < 1 \\
0,\text{ if }b=1,a > 0\text{ }and\text{ }a\ne 1 \\
-ve,\text{ if }a > 1,0 < b < 1 \\
-ve,\text{ if }0 < a < 1,b > 1 \\
\end{array} \right.\] and apply those which are feasible for \[{{\log }_{x}}\left( \cos 2\pi x \right)\ge 0\]. We then make the necessary calculations to find the domain for the feasible properties which in turn gives us the domain of the function $f\left( x \right)$.
Complete step-by-step answer:
According to the problem, we need to find the domain of the function \[f\left( x \right)=\sqrt{{{\log }_{x}}\left( \cos 2\pi x \right)}\].
We know that the function $\sqrt{g\left( x \right)}$ is valid if and only if the values of $g\left( x \right)\ge 0$.
So, we have \[{{\log }_{x}}\left( \cos 2\pi x \right)\ge 0\] ---(1).
We know that the properties of the logarithmic function ${{\log }_{a}}b$ is defined as follows:
\[{{\log }_{a}}b=\left\{ \begin{array}{*{35}{l}}
+ve,\text{ if }a > 1,b > 1 \\
+ve,\text{ if }0 < a < 1,0 < b < 1 \\
0,\text{ if }b=1,a > 0\text{ }and\text{ }a\ne 1 \\
-ve,\text{ if }a > 1,0 < b < 1 \\
-ve,\text{ if }0 < a < 1,b > 1 \\
\end{array} \right.\].
So, the feasible conditions for equation (1) is
(i) $x > 1\text{ and }\cos \left( 2\pi x \right) > 1$.
(ii) $0 < x < 1\text{ and }0 < \cos \left( 2\pi x \right) < 1$.
(iii) $x > 0\text{ and }x\ne 1\text{ and }\cos \left( 2\pi x \right)=1$.
Let us first check the feasible condition (i), $x > 1\text{ and }\cos \left( 2\pi x \right) > 1$.
We know that the range of the cosine function is $\left[ -1,1 \right]$. So, $\cos \left( 2\pi x \right) > 1$ is not possible for any value of ‘x’.
Now, let us check the feasible condition (ii), $0 < x < 1\text{ and }0 < \cos \left( 2\pi x \right) < 1$.
We know that if $0 < \cos x < 1$, then $\left( 4n-1 \right)\dfrac{\pi }{2} < x < \left( 4n+1 \right)\dfrac{\pi }{2},n\in I$.
So, we get \[\left( 4n-1 \right)\dfrac{\pi }{2} < 2\pi x < \left( 4n+1 \right)\dfrac{\pi }{2},n\in I\].
$\Rightarrow \dfrac{4n-1}{4} < x < \dfrac{4n+1}{4},n\in I$.
Let us substitute the value of integers.
$\Rightarrow .....\cup \left( \dfrac{-1}{4},\dfrac{1}{4} \right)\cup \left( \dfrac{3}{4},\dfrac{5}{4} \right)\cup \left( \dfrac{7}{4},\dfrac{9}{4} \right)\cup .......$ ---(1).
But we already have another condition for ‘x’. i.e., $0 < x < 1$. So, we neglect all the negative values and the values that were greater than or equal to 1 of ‘x’ in equation (1).
So, the domain we get for this condition is $x\in \left( 0,\dfrac{1}{4} \right)\cup \left( \dfrac{3}{4},1 \right)$ ---(2).
Now, let us check the feasible condition (iii), $x > 0\text{ and }x\ne 1\text{ and }\cos \left( 2\pi x \right)=1$.
We know that if $\cos x=1$, then $2n\pi ,n\in I$.
So, we get $2\pi x=2n\pi ,n\in I$.
$\Rightarrow x=n,n\in I$. But we already have the condition $x > 0\text{ and }x\ne 1$.
This gives us the domain for ‘x’ as $\left\{ 2,3,4,...... \right\}$ ---(3).
From (2) and (3), we have found the domain of $f\left( x \right)$ as $x\in \left\{ 2,3,4,5,..... \right\}\cup \left( 0,\dfrac{1}{4} \right)\cup \left( \dfrac{3}{4},1 \right)$.
We have found the domain of $f\left( x \right)$ as $x\in \left\{ 2,3,4,5,..... \right\}\cup \left( 0,\dfrac{1}{4} \right)\cup \left( \dfrac{3}{4},1 \right)$.
Note: We should not include 0, 1 in the domain of $f\left( x \right)$ as the logarithmic function is not valid at that value of ‘x’. We should know that the both the conditions of $a$ and $b$ of ${{\log }_{a}}b$ should be valid while checking the feasibility conditions of \[{{\log }_{x}}\left( \cos 2\pi x \right)\ge 0\]. We can see that the given problem contains a lot of calculation, so we need to perform each step carefully. Similarly, we can expect the problems to find the domain of \[f\left( x \right)=\sqrt{{{\log }_{x}}\left( \cos \left| 2\pi x \right| \right)}\] and \[f\left( x \right)=\sqrt{{{\log }_{x}}\left( \cos \left[ 2\pi x \right] \right)}\].
+ve,\text{ if }a > 1,b > 1 \\
+ve,\text{ if }0 < a < 1,0 < b < 1 \\
0,\text{ if }b=1,a > 0\text{ }and\text{ }a\ne 1 \\
-ve,\text{ if }a > 1,0 < b < 1 \\
-ve,\text{ if }0 < a < 1,b > 1 \\
\end{array} \right.\] and apply those which are feasible for \[{{\log }_{x}}\left( \cos 2\pi x \right)\ge 0\]. We then make the necessary calculations to find the domain for the feasible properties which in turn gives us the domain of the function $f\left( x \right)$.
Complete step-by-step answer:
According to the problem, we need to find the domain of the function \[f\left( x \right)=\sqrt{{{\log }_{x}}\left( \cos 2\pi x \right)}\].
We know that the function $\sqrt{g\left( x \right)}$ is valid if and only if the values of $g\left( x \right)\ge 0$.
So, we have \[{{\log }_{x}}\left( \cos 2\pi x \right)\ge 0\] ---(1).
We know that the properties of the logarithmic function ${{\log }_{a}}b$ is defined as follows:
\[{{\log }_{a}}b=\left\{ \begin{array}{*{35}{l}}
+ve,\text{ if }a > 1,b > 1 \\
+ve,\text{ if }0 < a < 1,0 < b < 1 \\
0,\text{ if }b=1,a > 0\text{ }and\text{ }a\ne 1 \\
-ve,\text{ if }a > 1,0 < b < 1 \\
-ve,\text{ if }0 < a < 1,b > 1 \\
\end{array} \right.\].
So, the feasible conditions for equation (1) is
(i) $x > 1\text{ and }\cos \left( 2\pi x \right) > 1$.
(ii) $0 < x < 1\text{ and }0 < \cos \left( 2\pi x \right) < 1$.
(iii) $x > 0\text{ and }x\ne 1\text{ and }\cos \left( 2\pi x \right)=1$.
Let us first check the feasible condition (i), $x > 1\text{ and }\cos \left( 2\pi x \right) > 1$.
We know that the range of the cosine function is $\left[ -1,1 \right]$. So, $\cos \left( 2\pi x \right) > 1$ is not possible for any value of ‘x’.
Now, let us check the feasible condition (ii), $0 < x < 1\text{ and }0 < \cos \left( 2\pi x \right) < 1$.
We know that if $0 < \cos x < 1$, then $\left( 4n-1 \right)\dfrac{\pi }{2} < x < \left( 4n+1 \right)\dfrac{\pi }{2},n\in I$.
So, we get \[\left( 4n-1 \right)\dfrac{\pi }{2} < 2\pi x < \left( 4n+1 \right)\dfrac{\pi }{2},n\in I\].
$\Rightarrow \dfrac{4n-1}{4} < x < \dfrac{4n+1}{4},n\in I$.
Let us substitute the value of integers.
$\Rightarrow .....\cup \left( \dfrac{-1}{4},\dfrac{1}{4} \right)\cup \left( \dfrac{3}{4},\dfrac{5}{4} \right)\cup \left( \dfrac{7}{4},\dfrac{9}{4} \right)\cup .......$ ---(1).
But we already have another condition for ‘x’. i.e., $0 < x < 1$. So, we neglect all the negative values and the values that were greater than or equal to 1 of ‘x’ in equation (1).
So, the domain we get for this condition is $x\in \left( 0,\dfrac{1}{4} \right)\cup \left( \dfrac{3}{4},1 \right)$ ---(2).
Now, let us check the feasible condition (iii), $x > 0\text{ and }x\ne 1\text{ and }\cos \left( 2\pi x \right)=1$.
We know that if $\cos x=1$, then $2n\pi ,n\in I$.
So, we get $2\pi x=2n\pi ,n\in I$.
$\Rightarrow x=n,n\in I$. But we already have the condition $x > 0\text{ and }x\ne 1$.
This gives us the domain for ‘x’ as $\left\{ 2,3,4,...... \right\}$ ---(3).
From (2) and (3), we have found the domain of $f\left( x \right)$ as $x\in \left\{ 2,3,4,5,..... \right\}\cup \left( 0,\dfrac{1}{4} \right)\cup \left( \dfrac{3}{4},1 \right)$.
We have found the domain of $f\left( x \right)$ as $x\in \left\{ 2,3,4,5,..... \right\}\cup \left( 0,\dfrac{1}{4} \right)\cup \left( \dfrac{3}{4},1 \right)$.
Note: We should not include 0, 1 in the domain of $f\left( x \right)$ as the logarithmic function is not valid at that value of ‘x’. We should know that the both the conditions of $a$ and $b$ of ${{\log }_{a}}b$ should be valid while checking the feasibility conditions of \[{{\log }_{x}}\left( \cos 2\pi x \right)\ge 0\]. We can see that the given problem contains a lot of calculation, so we need to perform each step carefully. Similarly, we can expect the problems to find the domain of \[f\left( x \right)=\sqrt{{{\log }_{x}}\left( \cos \left| 2\pi x \right| \right)}\] and \[f\left( x \right)=\sqrt{{{\log }_{x}}\left( \cos \left[ 2\pi x \right] \right)}\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

