
Find \[{{f}^{-1}}\], if it exists: \[f:A\to B,\] where
(i) \[A=\left\{ 0,-1,-3,2 \right\};B=\left\{ -9,-3,0,6 \right\}\] and \[f\left( x \right)=3x\]
(ii) \[A=\left\{ 1,3,5,7,9 \right\};B=\left\{ 0,1,9,25,49,81 \right\}\] and \[f\left( x \right)={{x}^{2}}\]
Answer
621.9k+ views
Hint: Check if the function is one-one and onto. If yes, then write \[x\] in terms of \[f\left( x \right)\], then replace \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[f\left( x \right)\] by \[x\].
(i) Here we have to find \[{{f}^{-1}}\] for \[f:A\to B\], where \[A=\left\{ 0,-1,-3,2 \right\};B=\left\{ -9,-3,0,6 \right\}\] and \[f\left( x \right)=3x\]
We know that \[f\left( x \right)\] is invertible only when \[f\left( x \right)\] is one-one and onto.
Now, we will check \[f\left( x \right)\] for one-one and onto.
Now, we will put \[\left\{ 0,-1,-3,2 \right\}\] in \[f\left( x \right)\] which is the domain \[\left( A \right)\] of the function.
Therefore, \[f\left( 0 \right)=3\left( 0 \right)=0\]
\[f\left( -1 \right)=3\left( -1 \right)=-3\]
\[f\left( -3 \right)=3\left( -3 \right)=-9\]
\[f\left( 2 \right)=3\left( 2 \right)=6\]
Therefore, \[\left\{ 0,-3,-9,6 \right\}\] is in the range of the function.
As \[A\] have different \[f\] images in \[B\], therefore the function is one – one
Also, range \[=\] co-domain, therefore function is onto.
Therefore, to find \[{{f}^{-1}}\left( x \right)\], we will write \[x\] in terms of \[f\left( x \right)\] and then replace \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[f\left( x \right)\]by \[x\].
So, \[f\left( x \right)=3x\]
\[\dfrac{f\left( x \right)}{3}=x\]
By replacing \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[f\left( x \right)\] by \[x\], we get
\[{{f}^{-1}}\left( x \right)=\dfrac{x}{3}:B\to A\] where \[B=\left\{ -9,-3,0,6 \right\}\] and \[A=\left\{ 0,-1,-3,2 \right\}\]
(ii) Here we have to find \[{{f}^{-1}}\] for \[f:A\to B\] where \[A=\left\{ 1,3,5,7,9 \right\};B=\left\{ 0,1,9,25,49,81 \right\}\] and \[f\left( x \right)={{x}^{2}}\].
First of all, we will check \[f\left( x \right)\] for one-one and onto.
Now, we will put \[\left\{ 1,3,5,7,9 \right\}\] in \[f\left( x \right)\] which is the domain of the function.
Therefore, \[f\left( 1 \right)={{\left( 1 \right)}^{2}}=1\]
\[f\left( 3 \right)={{\left( 3 \right)}^{2}}=9\]
\[f\left( 5 \right)={{\left( 5 \right)}^{2}}=25\]
\[f\left( 7 \right)={{\left( 7 \right)}^{2}}=49\]
\[f\left( 9 \right)={{\left( 9 \right)}^{2}}=81\]
Therefore, \[\left\{ 1,9,25,49,81 \right\}\] is the range of the function.
As\[A\] have different \[f\] images in \[B\], therefore the function is one – one.
Also range \[=\] co-domain. Therefore, the function is onto.
Therefore, to find \[{{f}^{-1}}\left( x \right)\], we will write \[x\] in terms of \[f\left( x \right)\] and then replace \[f\left( x \right)\] by \[x\] and \[x\] by \[{{f}^{-1}}\left( x \right)\].
So, \[f\left( x \right)={{x}^{2}}\]
\[\sqrt{f\left( x \right)}=x\]
By replacing \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[y\] by \[x\], we get
\[{{f}^{-1}}\left( x \right)=\sqrt{x}:B\to A\] where \[B:\left\{ 0,1,9,25,49,81 \right\}\] and \[A:\left\{ 0,1,3,5,7,9 \right\}\]
Note: Students must check if the function is one-one and onto before finding the inverse of the function. One – one function means different elements of the domain have different \[f\] images in the codomain. Onto function means the range of the function should be equal to its codomain.
(i) Here we have to find \[{{f}^{-1}}\] for \[f:A\to B\], where \[A=\left\{ 0,-1,-3,2 \right\};B=\left\{ -9,-3,0,6 \right\}\] and \[f\left( x \right)=3x\]
We know that \[f\left( x \right)\] is invertible only when \[f\left( x \right)\] is one-one and onto.
Now, we will check \[f\left( x \right)\] for one-one and onto.
Now, we will put \[\left\{ 0,-1,-3,2 \right\}\] in \[f\left( x \right)\] which is the domain \[\left( A \right)\] of the function.
Therefore, \[f\left( 0 \right)=3\left( 0 \right)=0\]
\[f\left( -1 \right)=3\left( -1 \right)=-3\]
\[f\left( -3 \right)=3\left( -3 \right)=-9\]
\[f\left( 2 \right)=3\left( 2 \right)=6\]
Therefore, \[\left\{ 0,-3,-9,6 \right\}\] is in the range of the function.
As \[A\] have different \[f\] images in \[B\], therefore the function is one – one
Also, range \[=\] co-domain, therefore function is onto.
Therefore, to find \[{{f}^{-1}}\left( x \right)\], we will write \[x\] in terms of \[f\left( x \right)\] and then replace \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[f\left( x \right)\]by \[x\].
So, \[f\left( x \right)=3x\]
\[\dfrac{f\left( x \right)}{3}=x\]
By replacing \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[f\left( x \right)\] by \[x\], we get
\[{{f}^{-1}}\left( x \right)=\dfrac{x}{3}:B\to A\] where \[B=\left\{ -9,-3,0,6 \right\}\] and \[A=\left\{ 0,-1,-3,2 \right\}\]
(ii) Here we have to find \[{{f}^{-1}}\] for \[f:A\to B\] where \[A=\left\{ 1,3,5,7,9 \right\};B=\left\{ 0,1,9,25,49,81 \right\}\] and \[f\left( x \right)={{x}^{2}}\].
First of all, we will check \[f\left( x \right)\] for one-one and onto.
Now, we will put \[\left\{ 1,3,5,7,9 \right\}\] in \[f\left( x \right)\] which is the domain of the function.
Therefore, \[f\left( 1 \right)={{\left( 1 \right)}^{2}}=1\]
\[f\left( 3 \right)={{\left( 3 \right)}^{2}}=9\]
\[f\left( 5 \right)={{\left( 5 \right)}^{2}}=25\]
\[f\left( 7 \right)={{\left( 7 \right)}^{2}}=49\]
\[f\left( 9 \right)={{\left( 9 \right)}^{2}}=81\]
Therefore, \[\left\{ 1,9,25,49,81 \right\}\] is the range of the function.
As\[A\] have different \[f\] images in \[B\], therefore the function is one – one.
Also range \[=\] co-domain. Therefore, the function is onto.
Therefore, to find \[{{f}^{-1}}\left( x \right)\], we will write \[x\] in terms of \[f\left( x \right)\] and then replace \[f\left( x \right)\] by \[x\] and \[x\] by \[{{f}^{-1}}\left( x \right)\].
So, \[f\left( x \right)={{x}^{2}}\]
\[\sqrt{f\left( x \right)}=x\]
By replacing \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[y\] by \[x\], we get
\[{{f}^{-1}}\left( x \right)=\sqrt{x}:B\to A\] where \[B:\left\{ 0,1,9,25,49,81 \right\}\] and \[A:\left\{ 0,1,3,5,7,9 \right\}\]
Note: Students must check if the function is one-one and onto before finding the inverse of the function. One – one function means different elements of the domain have different \[f\] images in the codomain. Onto function means the range of the function should be equal to its codomain.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

