
Find \[f'\left( x \right)\].
\[f\left( x \right)=\sec x-\sqrt{2}\tan x\]
Answer
493.2k+ views
Hint: To solve the above problem first we have to find the basic derivatives of \[\sec x\] and \[\tan x\]. After substituting the derivatives in the equation, rewrite the equation with the derivatives of the function. Solve the equation to find the final answer.
Complete step-by-step answer:
Applying derivative on both sides of the equation with respect to x we get,
\[f'\left( x \right)=\dfrac{d}{dx}\left( \sec x \right)-\dfrac{d}{dx}\left( \sqrt{2}\tan x \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know the derivative of \[\sec x\] is \[\sec x\cdot \tan x\] and the derivative of \[\tan x\] is \[{{\sec }^{2}}x\].
On substituting the derivatives of \[\sec x\] and \[\tan x\] in the above equation we get,
\[f'\left( x \right)=\sec x\cdot \tan x-\sqrt{2}{{\sec }^{2}}x\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Taking \[\sec x\] as common in the right hand side (RHS) we get,
\[f'\left( x \right)=\sec x\left( \tan x-\sqrt{2}\sec x \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Hence the value of \[f'\left( x \right)\] is \[\sec x\left( \tan x-\sqrt{2}\sec x \right)\].
Note: The possible error that you may encounter can be the wrong substitution values of the derivatives of \[\sec x\] and \[\tan x\]. Solving the equation should be done carefully. It is to note here that integers are exempted from the calculation of derivatives.
Complete step-by-step answer:
Applying derivative on both sides of the equation with respect to x we get,
\[f'\left( x \right)=\dfrac{d}{dx}\left( \sec x \right)-\dfrac{d}{dx}\left( \sqrt{2}\tan x \right)\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
We know the derivative of \[\sec x\] is \[\sec x\cdot \tan x\] and the derivative of \[\tan x\] is \[{{\sec }^{2}}x\].
On substituting the derivatives of \[\sec x\] and \[\tan x\] in the above equation we get,
\[f'\left( x \right)=\sec x\cdot \tan x-\sqrt{2}{{\sec }^{2}}x\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Taking \[\sec x\] as common in the right hand side (RHS) we get,
\[f'\left( x \right)=\sec x\left( \tan x-\sqrt{2}\sec x \right)\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Hence the value of \[f'\left( x \right)\] is \[\sec x\left( \tan x-\sqrt{2}\sec x \right)\].
Note: The possible error that you may encounter can be the wrong substitution values of the derivatives of \[\sec x\] and \[\tan x\]. Solving the equation should be done carefully. It is to note here that integers are exempted from the calculation of derivatives.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

The final image formed by a compound microscope is class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What are the major means of transport Explain each class 12 social science CBSE

Which of the following properties of a proton can change class 12 physics CBSE
