Find out the value of given expression,
\[ - {\text{ }}\dfrac{{21}}{2}{\text{ + 15 + }}\dfrac{{39}}{2}{\text{ }} - {\text{ 15 }}\]
Answer
Verified
511.8k+ views
Hint:- First perform arithmetic operations on integers and then perform arithmetic operations rational numbers after that perform arithmetic operations on the result.
As we know that integers are the sets of numbers starting from negative infinity and goes on till positive infinity.
Integers are {……………., –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, ………………}
And fractional numbers are the sets of numbers which can be changed to decimal numbers by dividing the numerator by denominator and they can also be negative or positive.
Some fractional numbers are \[\left\{ {{\text{ }}\dfrac{4}{3},{\text{ }}\dfrac{5}{4},{\text{ }}\dfrac{7}{2},{\text{ }}\dfrac{9}{6}{\text{ }}} \right\}\]
Integers are special cases of fractional numbers with denominators equal to 1.
So, first we calculate integers in the given equation.
So, \[{\text{ + 15 }} - {\text{ 15 = 0}}\] (1)
And then calculating the fractional numbers given in the equation. We get,
\[ - {\text{ }}\dfrac{{21}}{2}{\text{ + }}\dfrac{{39}}{2}{\text{ = }}\dfrac{{ - 21{\text{ + 39}}}}{2}{\text{ = }}\dfrac{{18}}{2}{\text{ = 9}}\] (2)
So, now the given equation is,
\[ - {\text{ }}\dfrac{{21}}{2}{\text{ + 15 + }}\dfrac{{39}}{2}{\text{ }} - {\text{ 15 }}\] (3)
So, putting the value of equation 1 and equation 2 in equation 3.
We get,
\[ - {\text{ }}\dfrac{{21}}{2}{\text{ + 15 + }}\dfrac{{39}}{2}{\text{ }} - {\text{ 15 = + 15 }} - {\text{ 15 }} - {\text{ }}\dfrac{{21}}{2}{\text{ + }}\dfrac{{39}}{2}{\text{ = 0 + 9 }}\]
Now, solving the above equation. We get,
\[0{\text{ + 9 = 9}}\]
Hence, the required value of the given equation is 9.
Note:- Whenever we come up with this type of problem then to solve the given equation by other method, first we need to change the fractional numbers to decimal numbers by dividing numerator by the denominator. And after that we will get an equation with integers and decimal numbers. So, now we can apply the given arithmetic operations easily.
As we know that integers are the sets of numbers starting from negative infinity and goes on till positive infinity.
Integers are {……………., –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, ………………}
And fractional numbers are the sets of numbers which can be changed to decimal numbers by dividing the numerator by denominator and they can also be negative or positive.
Some fractional numbers are \[\left\{ {{\text{ }}\dfrac{4}{3},{\text{ }}\dfrac{5}{4},{\text{ }}\dfrac{7}{2},{\text{ }}\dfrac{9}{6}{\text{ }}} \right\}\]
Integers are special cases of fractional numbers with denominators equal to 1.
So, first we calculate integers in the given equation.
So, \[{\text{ + 15 }} - {\text{ 15 = 0}}\] (1)
And then calculating the fractional numbers given in the equation. We get,
\[ - {\text{ }}\dfrac{{21}}{2}{\text{ + }}\dfrac{{39}}{2}{\text{ = }}\dfrac{{ - 21{\text{ + 39}}}}{2}{\text{ = }}\dfrac{{18}}{2}{\text{ = 9}}\] (2)
So, now the given equation is,
\[ - {\text{ }}\dfrac{{21}}{2}{\text{ + 15 + }}\dfrac{{39}}{2}{\text{ }} - {\text{ 15 }}\] (3)
So, putting the value of equation 1 and equation 2 in equation 3.
We get,
\[ - {\text{ }}\dfrac{{21}}{2}{\text{ + 15 + }}\dfrac{{39}}{2}{\text{ }} - {\text{ 15 = + 15 }} - {\text{ 15 }} - {\text{ }}\dfrac{{21}}{2}{\text{ + }}\dfrac{{39}}{2}{\text{ = 0 + 9 }}\]
Now, solving the above equation. We get,
\[0{\text{ + 9 = 9}}\]
Hence, the required value of the given equation is 9.
Note:- Whenever we come up with this type of problem then to solve the given equation by other method, first we need to change the fractional numbers to decimal numbers by dividing numerator by the denominator. And after that we will get an equation with integers and decimal numbers. So, now we can apply the given arithmetic operations easily.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the editor of a newspaper on reckless class 6 english CBSE
The planet nearest to earth is A Mercury B Venus C class 6 social science CBSE
Number of Prime between 1 to 100 is class 6 maths CBSE
How many millions make a billion class 6 maths CBSE
How many time zones are in China class 6 social science CBSE