
Find $\overrightarrow a \times \overrightarrow b $ and \[\left| {\overrightarrow a \times \overrightarrow b } \right|\] if \[\overrightarrow a = \widehat i + 3\widehat j - 2\widehat k\] and \[\overrightarrow b = 2\widehat i + \widehat j - 3\widehat k\].
Answer
593.1k+ views
Hint: Use the concept of cross product or vector product of two vectors and find their product then take the modulus of resultant vector to find the value of \[\left| {\overrightarrow a \times \overrightarrow b } \right|\].
Complete step by step solution: Given two vectors,
\[\overrightarrow a = \widehat i + 3\widehat j - 2\widehat k\] and \[\overrightarrow b = 2\widehat i + \widehat j - 3\widehat k\]
To find the cross product and their magnitude
We know that cross product of \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\] and \[\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k\] is equal to
\[\overrightarrow a \times \overrightarrow b = \left( {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}}
\end{array}} \right)\]
On opening the determinant we get,
\[\overrightarrow a \times \overrightarrow b = \widehat i({a_2}{b_3} - {b_2}{a_3}) - \widehat j({a_1}{b_3} - {b_1}{a_3}) + \widehat k({a_1}{b_2} - {b_1}{a_2})\]
Now put the value of vector a and vector b in above formula
We get,
\[\overrightarrow a \times \overrightarrow b = \left( {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
1&3&{ - 2} \\
2&1&{ - 3}
\end{array}} \right)\]
\[\overrightarrow a \times \overrightarrow b = \widehat i[3 \bullet \left( { - 3} \right) - 1 \bullet \left( { - 2} \right)] - \widehat j[1 \bullet \left( { - 3} \right) - 2 \bullet \left( { - 2} \right)] + \widehat k[1 \bullet 1 - 2 \bullet 3]\]
On simplification,
\[\overrightarrow a \times \overrightarrow b = - 7i - \widehat j - 5\widehat k\]
Now we have to find the modulus or magnitude of $\overrightarrow a \times \overrightarrow b $
We know that \[\left| {\overrightarrow a } \right| = \sqrt {{a^2}_1 + {a^2}_2 + {a^2}_3} \] of a vector \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\]
So modulus of $\overrightarrow a \times \overrightarrow b $
On putting the value
\[\left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 5} \right)}^2}} \]
On simplifying the above we get
\[\left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {49 + 1 + 25} \]
\[\left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {75} \]
Or \[\left| {\overrightarrow a \times \overrightarrow b } \right| = 5\sqrt 3 \]
Hence \[\overrightarrow a \times \overrightarrow b = - 7i - \widehat j - 5\widehat k\] and \[\left| {\overrightarrow a \times \overrightarrow b } \right| = 5\sqrt 3 \]
Additional information: Cross product or vector product of two vectors is always a vector quantity which has direction as well as the magnitude, while the dot product or scalar product of two vectors is always a scalar quantity which has no direction only magnitude. The modulus of any vector gives its magnitude.
Note: Magnitude or modulus of any vector can not be negative in any condition because it is always a distance from origin.
Complete step by step solution: Given two vectors,
\[\overrightarrow a = \widehat i + 3\widehat j - 2\widehat k\] and \[\overrightarrow b = 2\widehat i + \widehat j - 3\widehat k\]
To find the cross product and their magnitude
We know that cross product of \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\] and \[\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k\] is equal to
\[\overrightarrow a \times \overrightarrow b = \left( {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}}
\end{array}} \right)\]
On opening the determinant we get,
\[\overrightarrow a \times \overrightarrow b = \widehat i({a_2}{b_3} - {b_2}{a_3}) - \widehat j({a_1}{b_3} - {b_1}{a_3}) + \widehat k({a_1}{b_2} - {b_1}{a_2})\]
Now put the value of vector a and vector b in above formula
We get,
\[\overrightarrow a \times \overrightarrow b = \left( {\begin{array}{*{20}{c}}
{\widehat i}&{\widehat j}&{\widehat k} \\
1&3&{ - 2} \\
2&1&{ - 3}
\end{array}} \right)\]
\[\overrightarrow a \times \overrightarrow b = \widehat i[3 \bullet \left( { - 3} \right) - 1 \bullet \left( { - 2} \right)] - \widehat j[1 \bullet \left( { - 3} \right) - 2 \bullet \left( { - 2} \right)] + \widehat k[1 \bullet 1 - 2 \bullet 3]\]
On simplification,
\[\overrightarrow a \times \overrightarrow b = - 7i - \widehat j - 5\widehat k\]
Now we have to find the modulus or magnitude of $\overrightarrow a \times \overrightarrow b $
We know that \[\left| {\overrightarrow a } \right| = \sqrt {{a^2}_1 + {a^2}_2 + {a^2}_3} \] of a vector \[\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k\]
So modulus of $\overrightarrow a \times \overrightarrow b $
On putting the value
\[\left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {{{\left( { - 7} \right)}^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 5} \right)}^2}} \]
On simplifying the above we get
\[\left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {49 + 1 + 25} \]
\[\left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {75} \]
Or \[\left| {\overrightarrow a \times \overrightarrow b } \right| = 5\sqrt 3 \]
Hence \[\overrightarrow a \times \overrightarrow b = - 7i - \widehat j - 5\widehat k\] and \[\left| {\overrightarrow a \times \overrightarrow b } \right| = 5\sqrt 3 \]
Additional information: Cross product or vector product of two vectors is always a vector quantity which has direction as well as the magnitude, while the dot product or scalar product of two vectors is always a scalar quantity which has no direction only magnitude. The modulus of any vector gives its magnitude.
Note: Magnitude or modulus of any vector can not be negative in any condition because it is always a distance from origin.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

