
How do you find slope and intercept of the given linear equation, the equation is \[y = - 2x + 3\] ?
Answer
552.9k+ views
Hint: Slope is the angle from the positive axis of the graph to the line drawn; it gives the angle of inclination of the graph. To find the slope of any line you can use trigonometric identity of \[\tan x\] where \[x\] is the ratio of perpendicular length and base length, now to find the intercept which means the points on which the curve is cutting the axis of graph can be found out by some simplification in the equation.
Complete step by step solution:
The given equation is \[y = - 2x + 3\] . According to the question we have to find the slope and intercept of the curve given, let’s first find the slope of the graph: For finding slope we are using here the differentiation method of finding slope, in which we have to differentiate the equation as \[\dfrac{{dy}}{{dx}}\]. Now finding the value of \[y\] from the equation by rearranging the term we get:
\[y = - 2x + 3\]
Now on differentiating the term we get:
\[
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( { - 2x + 3} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = - 2(differentiation\,of\,x\,with\,respect\,to\,x\,is1\,and\,differentiation\,of\,contant\,term\,is\,zero) \\ \]
Hence, we find the required slope of the given equation.
Now for finding the intercept we have to rearrange the equation as, the general equation which is:
\[ \dfrac{x}{a} + \dfrac{y}{b} = 1\,(here\,a\,and\,b\,are\,intercept\,of\,the\,given\,equation)\]
Rearranging our equation, we get:
\[2x + y = 3(dividing\,by\,10\,both\,the\,sides\,of\,the\,equation) \\
\Rightarrow \dfrac{{2x}}{3} + \dfrac{y}{3} = 1 \\
\therefore Intercept\,are\,\dfrac{2}{3},\dfrac{1}{3}\,for\,x\,and\,y\,respectively \\
\]
Note: Here it was easy to rearrange the equation in the general form of the intercept equation but if this rearrangement is not possible then you have to plot the graph and then check the points on which the curve is cutting both the axes and that the coordinates are our required intercepts.
Complete step by step solution:
The given equation is \[y = - 2x + 3\] . According to the question we have to find the slope and intercept of the curve given, let’s first find the slope of the graph: For finding slope we are using here the differentiation method of finding slope, in which we have to differentiate the equation as \[\dfrac{{dy}}{{dx}}\]. Now finding the value of \[y\] from the equation by rearranging the term we get:
\[y = - 2x + 3\]
Now on differentiating the term we get:
\[
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( { - 2x + 3} \right) \\
\Rightarrow \dfrac{{dy}}{{dx}} = - 2(differentiation\,of\,x\,with\,respect\,to\,x\,is1\,and\,differentiation\,of\,contant\,term\,is\,zero) \\ \]
Hence, we find the required slope of the given equation.
Now for finding the intercept we have to rearrange the equation as, the general equation which is:
\[ \dfrac{x}{a} + \dfrac{y}{b} = 1\,(here\,a\,and\,b\,are\,intercept\,of\,the\,given\,equation)\]
Rearranging our equation, we get:
\[2x + y = 3(dividing\,by\,10\,both\,the\,sides\,of\,the\,equation) \\
\Rightarrow \dfrac{{2x}}{3} + \dfrac{y}{3} = 1 \\
\therefore Intercept\,are\,\dfrac{2}{3},\dfrac{1}{3}\,for\,x\,and\,y\,respectively \\
\]
Note: Here it was easy to rearrange the equation in the general form of the intercept equation but if this rearrangement is not possible then you have to plot the graph and then check the points on which the curve is cutting both the axes and that the coordinates are our required intercepts.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE


