Answer
Verified
468.9k+ views
Hint: Arithmetic Progression (AP) is a sequence of numbers in order in which the difference of any two consecutive numbers is a constant value. For example, the series of natural numbers: \[1,{\text{ }}2,{\text{ }}3,{\text{ }}4,{\text{ }}5,{\text{ }}6,\]is an AP, which has a common difference between two successive terms (say 1 and 2) equal to 1 (2 -1). Even in the case of odd numbers and even numbers, we can see the common difference between two successive terms will be equal to 2.
Definition 1: A mathematical sequence in which the difference between two consecutive terms is always a constant and it is abbreviated as AP.
Definition 2: An arithmetic sequence or progression is defined as a sequence of numbers in which for every pair of consecutive terms, the second number is obtained by adding a fixed number to the first one.
In arithmetic progression (A.P) series the first term is denoted by ‘\[a\]’ and the common difference is denoted by ‘\[d\]’ and ‘\[n\]’ is a number of terms. ‘\[{a_n}\]’ is last term. Here in the series given the value of ‘\[a\]’ is \[8\]and ‘\[d\]’ is\[2\].
Complete step by step answer:
\[8,10,12,....126\]
Here first term \[a\]=\[8\]
Common difference \[ = \]\[10 - 8 = 2\]
Last term (\[l\])\[ = 126\]
Number of terms\[ = 10\]
Now \[{n^{th}}\] term from end using formula
\[l - (n - 1)d\]
\[ = 126 - (10 - 1)2\]
\[ = 126 - 9 \times 2\]
\[ = 108\]
Note: We can also find \[{n^{th}}\] term from beginning by using formula \[{a_n} = a + (n - 1)d\] and also sum of \[n\] terms by using formula \[{S_n} = \dfrac{n}{2}(2a + (n - 1)d)\] or \[{S_n} = \dfrac{n}{2}(a + l)\] if last term is given.
Definition 1: A mathematical sequence in which the difference between two consecutive terms is always a constant and it is abbreviated as AP.
Definition 2: An arithmetic sequence or progression is defined as a sequence of numbers in which for every pair of consecutive terms, the second number is obtained by adding a fixed number to the first one.
In arithmetic progression (A.P) series the first term is denoted by ‘\[a\]’ and the common difference is denoted by ‘\[d\]’ and ‘\[n\]’ is a number of terms. ‘\[{a_n}\]’ is last term. Here in the series given the value of ‘\[a\]’ is \[8\]and ‘\[d\]’ is\[2\].
Complete step by step answer:
\[8,10,12,....126\]
Here first term \[a\]=\[8\]
Common difference \[ = \]\[10 - 8 = 2\]
Last term (\[l\])\[ = 126\]
Number of terms\[ = 10\]
Now \[{n^{th}}\] term from end using formula
\[l - (n - 1)d\]
\[ = 126 - (10 - 1)2\]
\[ = 126 - 9 \times 2\]
\[ = 108\]
Note: We can also find \[{n^{th}}\] term from beginning by using formula \[{a_n} = a + (n - 1)d\] and also sum of \[n\] terms by using formula \[{S_n} = \dfrac{n}{2}(2a + (n - 1)d)\] or \[{S_n} = \dfrac{n}{2}(a + l)\] if last term is given.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE