Answer
Verified
430.2k+ views
Hint: Here the principal amount is Rs.36000 and we are given that it is compounded annually with a rate of interest of 10% for first year and 12% for second year and using this the amount at the end of two years is given by the formula $A = P\left( {1 + \dfrac{{{R_1}}}{{100}}} \right)\left( {1 + \dfrac{{{R_2}}}{{100}}} \right)$.
Complete step by step solution:
We are given a principle amount
$ \Rightarrow P = 36000$
And we are given that it was compounded annually
And we are given two different rate of interests for each year
So now let the rate of interest for first year be ${R_1}$
$ \Rightarrow {R_1} = 10\% $
And the rate of interest for second year be ${R_2}$
$ \Rightarrow {R_2} = 12\% $
Therefore the amount at the end of 2 years will be
$ \Rightarrow A = P\left( {1 + \dfrac{{{R_1}}}{{100}}} \right)\left( {1 + \dfrac{{{R_2}}}{{100}}} \right)$
Now let's use the known values in this formula
\[
\Rightarrow A = 36000\left( {1 + \dfrac{{10}}{{100}}} \right)\left( {1 + \dfrac{{12}}{{100}}} \right) \\
\Rightarrow A = 36000\left( {1 + \dfrac{1}{{10}}} \right)\left( {1 + \dfrac{3}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{10 + 1}}{{10}}} \right)\left( {\dfrac{{25 + 3}}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{11}}{{10}}} \right)\left( {\dfrac{{28}}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{308}}{{250}}} \right) = 3600\left( {\dfrac{{308}}{{25}}} \right) \\
\Rightarrow A = 144\times 308 = 44352 \\
\]
Therefore the amount at the end of two years is Rs.44352.
Note :
Students may tend to use the formula of compound interest
$ \Rightarrow A = P{\left( {1 + \dfrac{R}{{100}}} \right)^t}$
But we don’t use this here because we are given different rates of interest for each year.
Compound interest makes your money grow faster because interest is calculated on the accumulated interest over time as well as on your original principal.
Compound interest is the interest calculated on the principal and the interest accumulated over the previous period. It is different from the simple interest where interest is not added to the principal while calculating the interest during the next period. Compound interest finds its usage in most of the transactions in the banking and finance sectors and also in other areas as well.
Complete step by step solution:
We are given a principle amount
$ \Rightarrow P = 36000$
And we are given that it was compounded annually
And we are given two different rate of interests for each year
So now let the rate of interest for first year be ${R_1}$
$ \Rightarrow {R_1} = 10\% $
And the rate of interest for second year be ${R_2}$
$ \Rightarrow {R_2} = 12\% $
Therefore the amount at the end of 2 years will be
$ \Rightarrow A = P\left( {1 + \dfrac{{{R_1}}}{{100}}} \right)\left( {1 + \dfrac{{{R_2}}}{{100}}} \right)$
Now let's use the known values in this formula
\[
\Rightarrow A = 36000\left( {1 + \dfrac{{10}}{{100}}} \right)\left( {1 + \dfrac{{12}}{{100}}} \right) \\
\Rightarrow A = 36000\left( {1 + \dfrac{1}{{10}}} \right)\left( {1 + \dfrac{3}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{10 + 1}}{{10}}} \right)\left( {\dfrac{{25 + 3}}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{11}}{{10}}} \right)\left( {\dfrac{{28}}{{25}}} \right) \\
\Rightarrow A = 36000\left( {\dfrac{{308}}{{250}}} \right) = 3600\left( {\dfrac{{308}}{{25}}} \right) \\
\Rightarrow A = 144\times 308 = 44352 \\
\]
Therefore the amount at the end of two years is Rs.44352.
Note :
Students may tend to use the formula of compound interest
$ \Rightarrow A = P{\left( {1 + \dfrac{R}{{100}}} \right)^t}$
But we don’t use this here because we are given different rates of interest for each year.
Compound interest makes your money grow faster because interest is calculated on the accumulated interest over time as well as on your original principal.
Compound interest is the interest calculated on the principal and the interest accumulated over the previous period. It is different from the simple interest where interest is not added to the principal while calculating the interest during the next period. Compound interest finds its usage in most of the transactions in the banking and finance sectors and also in other areas as well.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers