
Find the angle between any diagonals of a cube.
Answer
580.8k+ views
Hint: The formula to be used for the for calculating the angle between the two vectors is
\[\cos \theta = \dfrac{{\vec a.\vec b}}{{\left| {\vec a} \right|\left| {\vec b} \right|}}\], where $ \vec a $ and $ \vec b $ are two vectors.
Complete step-by-step answer:
The figure below shows a cube of side length 1, in which OQ and OP are its diagonals. O is the origin of the cube.
From the above figure,
The coordinates of point $ P(1,1,1) $
The coordinates of point $ Q(1,1,0) $
Vector OP is given by,
$ \mathop {OP}\limits^ \to = \hat i + \hat j + \hat k $
The modulus of the vector r is given by,
$ \Rightarrow \vec r = a\hat i + b\hat j + c\hat k $ is $ \left| {\vec r} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
The modulus of $ \left| {\mathop {OP}\limits^ \to } \right| $ is given by,
$
\Rightarrow \left| {\mathop {OP}\limits^ \to } \right| = \sqrt {{1^2} + {1^2} + {1^2}} \\
\Rightarrow \left| {\mathop {OP}\limits^ \to } \right| = \sqrt 3 \\
$
Vector OQ is given by,
\[\mathop {OQ}\limits^ \to = \hat i + \hat j\]
The modulus of vector OQ is given by,
$
\Rightarrow \left| {\mathop {OQ}\limits^ \to } \right| = \sqrt {{1^2} + {1^2}} \\
\Rightarrow \left| {\mathop {OQ}\limits^ \to } \right| = \sqrt 2 \\
$
The angle between $ \mathop {OP}\limits^ \to $ and $ \mathop {OQ}\limits^ \to $ is given by,
\[\Rightarrow \cos \theta = \dfrac{{\mathop {OP}\limits^ \to .\mathop {OQ}\limits^ \to }}{{\left| {\mathop {OP}\limits^ \to } \right|\left| {\mathop {OQ}\limits^ \to } \right|}} \cdots \left( 1 \right)\]
Substitute the value of $ \mathop {OP}\limits^ \to $ and $ \mathop {OQ}\limits^ \to $ in equation (1)
The dot product of same unit vector is $ \hat i.\hat i = 1 $ and that of different unit vector is $ \hat i.\hat j = 0 $
$
\Rightarrow \cos \theta = \dfrac{{1 + 1 + 0}}{{\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)}} \\
\Rightarrow \cos \theta = \dfrac{2}{{\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)}} \\
\Rightarrow \cos \theta = \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\
\theta = {\cos ^{ - 1}}\left( {0.8165} \right) \\
\Rightarrow \theta = {35.26^o} \\
$
Hence, the angle between any two diagonals of a cube is $ {35.26^o} $
Note: The important point that is to be noted are,
The value of vector AB if vector A and vector B are given, is calculated as
$ \left| {\mathop {AB}\limits^ \to } \right| = \mathop B\limits^ \to - \mathop A\limits^ \to $
The modulus of the vector $ \vec r = a\hat i + b\hat j + c\hat k $ is calculated by taking the square root of the sum of the square of the coefficients and is given by the formula
$ \left| {\vec r} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
The modulus of the vectors tells about the magnitude of the vector.
The angle between the two vectors $ \vec m $ and $ \vec n $ is given by the formula
\[\cos \theta = \dfrac{{\vec m.\vec n}}{{\left| {\vec m} \right|\left| {\vec n} \right|}}\]
If the angle between the vectors is $ \dfrac{\pi }{2} $ , then $ \vec m.\vec n = 0 $
If the angle between the vector is $ 0 $ , then $ \vec m.\vec n = \left| {\vec m} \right|\left| {\vec n} \right| $ , and
If the angle between the vector is $ \pi $ , then $ \vec m.\vec n = - \left| {\vec m} \right|\left| {\vec n} \right| $
\[\cos \theta = \dfrac{{\vec a.\vec b}}{{\left| {\vec a} \right|\left| {\vec b} \right|}}\], where $ \vec a $ and $ \vec b $ are two vectors.
Complete step-by-step answer:
The figure below shows a cube of side length 1, in which OQ and OP are its diagonals. O is the origin of the cube.
From the above figure,
The coordinates of point $ P(1,1,1) $
The coordinates of point $ Q(1,1,0) $
Vector OP is given by,
$ \mathop {OP}\limits^ \to = \hat i + \hat j + \hat k $
The modulus of the vector r is given by,
$ \Rightarrow \vec r = a\hat i + b\hat j + c\hat k $ is $ \left| {\vec r} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
The modulus of $ \left| {\mathop {OP}\limits^ \to } \right| $ is given by,
$
\Rightarrow \left| {\mathop {OP}\limits^ \to } \right| = \sqrt {{1^2} + {1^2} + {1^2}} \\
\Rightarrow \left| {\mathop {OP}\limits^ \to } \right| = \sqrt 3 \\
$
Vector OQ is given by,
\[\mathop {OQ}\limits^ \to = \hat i + \hat j\]
The modulus of vector OQ is given by,
$
\Rightarrow \left| {\mathop {OQ}\limits^ \to } \right| = \sqrt {{1^2} + {1^2}} \\
\Rightarrow \left| {\mathop {OQ}\limits^ \to } \right| = \sqrt 2 \\
$
The angle between $ \mathop {OP}\limits^ \to $ and $ \mathop {OQ}\limits^ \to $ is given by,
\[\Rightarrow \cos \theta = \dfrac{{\mathop {OP}\limits^ \to .\mathop {OQ}\limits^ \to }}{{\left| {\mathop {OP}\limits^ \to } \right|\left| {\mathop {OQ}\limits^ \to } \right|}} \cdots \left( 1 \right)\]
Substitute the value of $ \mathop {OP}\limits^ \to $ and $ \mathop {OQ}\limits^ \to $ in equation (1)
The dot product of same unit vector is $ \hat i.\hat i = 1 $ and that of different unit vector is $ \hat i.\hat j = 0 $
$
\Rightarrow \cos \theta = \dfrac{{1 + 1 + 0}}{{\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)}} \\
\Rightarrow \cos \theta = \dfrac{2}{{\left( {\sqrt 3 } \right)\left( {\sqrt 2 } \right)}} \\
\Rightarrow \cos \theta = \dfrac{{\sqrt 2 }}{{\sqrt 3 }} \\
\theta = {\cos ^{ - 1}}\left( {0.8165} \right) \\
\Rightarrow \theta = {35.26^o} \\
$
Hence, the angle between any two diagonals of a cube is $ {35.26^o} $
Note: The important point that is to be noted are,
The value of vector AB if vector A and vector B are given, is calculated as
$ \left| {\mathop {AB}\limits^ \to } \right| = \mathop B\limits^ \to - \mathop A\limits^ \to $
The modulus of the vector $ \vec r = a\hat i + b\hat j + c\hat k $ is calculated by taking the square root of the sum of the square of the coefficients and is given by the formula
$ \left| {\vec r} \right| = \sqrt {{a^2} + {b^2} + {c^2}} $
The modulus of the vectors tells about the magnitude of the vector.
The angle between the two vectors $ \vec m $ and $ \vec n $ is given by the formula
\[\cos \theta = \dfrac{{\vec m.\vec n}}{{\left| {\vec m} \right|\left| {\vec n} \right|}}\]
If the angle between the vectors is $ \dfrac{\pi }{2} $ , then $ \vec m.\vec n = 0 $
If the angle between the vector is $ 0 $ , then $ \vec m.\vec n = \left| {\vec m} \right|\left| {\vec n} \right| $ , and
If the angle between the vector is $ \pi $ , then $ \vec m.\vec n = - \left| {\vec m} \right|\left| {\vec n} \right| $
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

