Answer
Verified
432.6k+ views
Hint: The given problem statement states to find the angle between the vectors with the help of the scalar product. You can assume each vector a variable that means one vector will be “a” and another one will be “b”. So, let’s look at the approach of the problem statement.
Complete Complete Step by Step Solution:
The given problem statement is to find the angle between the vectors $\hat{i}-2\hat{j}+3\hat{k}$ and $3\hat{i}-2\hat{j}+\hat{k}$.
Now, the first thing is to assume each of the vectors, that means, we will let $\hat{i}-2\hat{j}+3\hat{k}$is $\vec{a}$and $3\hat{i}-2\hat{j}+\hat{k}$ is $\vec{b}$.
So, if we write the vectors in a different manner, that means,
$\Rightarrow \vec{a}=1\hat{i}-2\hat{j}+3\hat{k}$
$\Rightarrow \vec{b}=3\hat{i}-2\hat{j}+1\hat{k}$
Now, we will use the scalar product formula, that means, we get,
$\Rightarrow \vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta $ where ,$\theta $is the angle between $\vec{a}$ and $\vec{b}$.
Now, we will find$\vec{a}.\vec{b}$, that means, we get,
$\Rightarrow \vec{a}.\vec{b}=(1\hat{i}-2\hat{j}+3\hat{k}).(3\hat{i}-2\hat{j}+1\hat{k})$
Now, when we solve this above equation, we get,
$\Rightarrow \vec{a}.\vec{b}=[(1\hat{i}.3\hat{i})+(-2\hat{j}.-2\hat{j})+(3\hat{k}.1\hat{k})]$
We have kept$\hat{i}.\hat{i}$, $\hat{j}.\hat{j}$ and $\hat{k}.\hat{k}$ because all these have the values 1 instead of $\hat{i}.\hat{j}$, $\hat{j}.\hat{k}$ and $\hat{k}.\hat{i}$because all these have the values as 0.
$\Rightarrow \vec{a}.\vec{b}=[(1.3)+(-2.-2)+(3.1)]$
$\Rightarrow \vec{a}.\vec{b}=3+4+3$
Now, when we solve, we get,
$\Rightarrow \vec{a}.\vec{b}=10$
Now, we will find magnitude of $\vec{a}$, that means, we get,
$\Rightarrow \vec{a}=1\hat{i}-2\hat{j}+3\hat{k}$
$\Rightarrow \vec{a}=\sqrt{{{(1)}^{2}}+{{(-2)}^{2}}+{{(3)}^{2}}}$
Now, when we solve, we get,
$\Rightarrow \vec{a}=\sqrt{1+4+9}$
$\Rightarrow \vec{a}=\sqrt{14}$
Similarly, we will find magnitude of $\vec{b}$, that means, we get,
$\Rightarrow \vec{b}=3\hat{i}-2\hat{j}+1\hat{k}$
$\Rightarrow \vec{b}=\sqrt{{{(3)}^{2}}+{{(-2)}^{2}}+{{(1)}^{2}}}$
Now, when we solve, we get,
$\Rightarrow \vec{b}=\sqrt{9+4+1}$
$\Rightarrow \vec{b}=\sqrt{14}$
Now, we will put the respective values in the formula $\vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta $, we get,
$\Rightarrow 10=\sqrt{14}\sqrt{14}\cos \theta $
Now, we will rearrange the equation, we get,
$\Rightarrow \dfrac{10}{\sqrt{14}\sqrt{14}}=\cos \theta $
As, we now $\sqrt{y}\sqrt{y}=y$, similarly we will apply in the equation and then we will convert it to lowest terms, we get,
$\Rightarrow \dfrac{10}{14}=\cos \theta $
$\Rightarrow \dfrac{5}{7}=\cos \theta $
Now when we rearrange we will get the value of $\theta $, we get,
$\Rightarrow {{\cos }^{-1}}(\dfrac{5}{7})=\theta $
After rearranging the equation, we get,
$\Rightarrow \theta ={{\cos }^{-1}}(\dfrac{5}{7})$
Therefore, the value of $\theta $or the angle between two vectors is ${{\cos }^{-1}}(\dfrac{5}{7})$.
Note:
In the above problem statement, we have used the fine concept of the scalar product. The scalar product is also known as the dot product. The formula used in the scalar product is $\vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta $. You need to note that the scalar product is commutative as well as distributive.
Complete Complete Step by Step Solution:
The given problem statement is to find the angle between the vectors $\hat{i}-2\hat{j}+3\hat{k}$ and $3\hat{i}-2\hat{j}+\hat{k}$.
Now, the first thing is to assume each of the vectors, that means, we will let $\hat{i}-2\hat{j}+3\hat{k}$is $\vec{a}$and $3\hat{i}-2\hat{j}+\hat{k}$ is $\vec{b}$.
So, if we write the vectors in a different manner, that means,
$\Rightarrow \vec{a}=1\hat{i}-2\hat{j}+3\hat{k}$
$\Rightarrow \vec{b}=3\hat{i}-2\hat{j}+1\hat{k}$
Now, we will use the scalar product formula, that means, we get,
$\Rightarrow \vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta $ where ,$\theta $is the angle between $\vec{a}$ and $\vec{b}$.
Now, we will find$\vec{a}.\vec{b}$, that means, we get,
$\Rightarrow \vec{a}.\vec{b}=(1\hat{i}-2\hat{j}+3\hat{k}).(3\hat{i}-2\hat{j}+1\hat{k})$
Now, when we solve this above equation, we get,
$\Rightarrow \vec{a}.\vec{b}=[(1\hat{i}.3\hat{i})+(-2\hat{j}.-2\hat{j})+(3\hat{k}.1\hat{k})]$
We have kept$\hat{i}.\hat{i}$, $\hat{j}.\hat{j}$ and $\hat{k}.\hat{k}$ because all these have the values 1 instead of $\hat{i}.\hat{j}$, $\hat{j}.\hat{k}$ and $\hat{k}.\hat{i}$because all these have the values as 0.
$\Rightarrow \vec{a}.\vec{b}=[(1.3)+(-2.-2)+(3.1)]$
$\Rightarrow \vec{a}.\vec{b}=3+4+3$
Now, when we solve, we get,
$\Rightarrow \vec{a}.\vec{b}=10$
Now, we will find magnitude of $\vec{a}$, that means, we get,
$\Rightarrow \vec{a}=1\hat{i}-2\hat{j}+3\hat{k}$
$\Rightarrow \vec{a}=\sqrt{{{(1)}^{2}}+{{(-2)}^{2}}+{{(3)}^{2}}}$
Now, when we solve, we get,
$\Rightarrow \vec{a}=\sqrt{1+4+9}$
$\Rightarrow \vec{a}=\sqrt{14}$
Similarly, we will find magnitude of $\vec{b}$, that means, we get,
$\Rightarrow \vec{b}=3\hat{i}-2\hat{j}+1\hat{k}$
$\Rightarrow \vec{b}=\sqrt{{{(3)}^{2}}+{{(-2)}^{2}}+{{(1)}^{2}}}$
Now, when we solve, we get,
$\Rightarrow \vec{b}=\sqrt{9+4+1}$
$\Rightarrow \vec{b}=\sqrt{14}$
Now, we will put the respective values in the formula $\vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta $, we get,
$\Rightarrow 10=\sqrt{14}\sqrt{14}\cos \theta $
Now, we will rearrange the equation, we get,
$\Rightarrow \dfrac{10}{\sqrt{14}\sqrt{14}}=\cos \theta $
As, we now $\sqrt{y}\sqrt{y}=y$, similarly we will apply in the equation and then we will convert it to lowest terms, we get,
$\Rightarrow \dfrac{10}{14}=\cos \theta $
$\Rightarrow \dfrac{5}{7}=\cos \theta $
Now when we rearrange we will get the value of $\theta $, we get,
$\Rightarrow {{\cos }^{-1}}(\dfrac{5}{7})=\theta $
After rearranging the equation, we get,
$\Rightarrow \theta ={{\cos }^{-1}}(\dfrac{5}{7})$
Therefore, the value of $\theta $or the angle between two vectors is ${{\cos }^{-1}}(\dfrac{5}{7})$.
Note:
In the above problem statement, we have used the fine concept of the scalar product. The scalar product is also known as the dot product. The formula used in the scalar product is $\vec{a}.\vec{b}=|\vec{a}||\vec{b}|\cos \theta $. You need to note that the scalar product is commutative as well as distributive.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
What organs are located on the left side of your body class 11 biology CBSE