Find the area of the ellipse: \[\frac{{{x^2}}}{4} + \frac{{{y^2}}}{9} = 1\]
Answer
Verified
512.7k+ views
Hint:To find the area of the ellipse, we will convert the given equation in terms of y and then integrate the region under the graph.
Here, the first step is to convert the given equation in terms of $y$.
Therefore the above equation can be written as,
\[\frac{{{y^2}}}{9} = 1 - \frac{{{x^2}}}{4}\]
If we solve it further, we get,
\[{y^2} = 9\left( {\frac{{4 - {x^2}}}{4}} \right)\]
\[y = \frac{3}{2}\left( {\sqrt {4 - {x^2}} } \right)\]
Now the next step is to use the formula of area of ellipse which is
Area of ellipse \[4\](area of region\[OAB\])
=\[4\int\limits_0^2 {ydx} \]
Note: Make sure you take the right limits.
We are going to equate the value of y.
=\[4\int\limits_0^2 {\frac{3}{2}\left( {\sqrt {4 - {x^2}} } \right)dx} \]
Now we take the constant out of the integration. And we convert \[\sqrt {4 - {x^2}} \]to a general form of \[\sqrt {{a^2} - {x^2}} \].Therefore we get,
=\[4\left( {\frac{3}{2}} \right)\int\limits_0^2 {\left( {\sqrt {{2^2} - {x^2}} } \right)dx} \]
We know that the integration of \[\sqrt {{a^2} - {x^2}} \] is equal to \[\frac{{x\sqrt {{a^2} - {x^2}} }}{2} + \frac{{{a^2}}}{2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + c\]
Therefore,
=\[6\left[ {\frac{1}{2} \times \sqrt {4 - {x^2}} + \frac{1}{2}\left( 4 \right){{\sin }^{ - 1}}\left( {\frac{x}{2}} \right)} \right]\]
=\[\frac{6}{2}\left[ {0 + 4{{\sin }^{ - 1}}\left( {\frac{2}{2}} \right)} \right]\]
=\[3\left[ {4{{\sin }^{ - 1}}\left( 1 \right)} \right]\]
=\[12\left( {\frac{\pi }{2}} \right)\]
Answer =\[6\pi \]
Here, the first step is to convert the given equation in terms of $y$.
Therefore the above equation can be written as,
\[\frac{{{y^2}}}{9} = 1 - \frac{{{x^2}}}{4}\]
If we solve it further, we get,
\[{y^2} = 9\left( {\frac{{4 - {x^2}}}{4}} \right)\]
\[y = \frac{3}{2}\left( {\sqrt {4 - {x^2}} } \right)\]
Now the next step is to use the formula of area of ellipse which is
Area of ellipse \[4\](area of region\[OAB\])
=\[4\int\limits_0^2 {ydx} \]
Note: Make sure you take the right limits.
We are going to equate the value of y.
=\[4\int\limits_0^2 {\frac{3}{2}\left( {\sqrt {4 - {x^2}} } \right)dx} \]
Now we take the constant out of the integration. And we convert \[\sqrt {4 - {x^2}} \]to a general form of \[\sqrt {{a^2} - {x^2}} \].Therefore we get,
=\[4\left( {\frac{3}{2}} \right)\int\limits_0^2 {\left( {\sqrt {{2^2} - {x^2}} } \right)dx} \]
We know that the integration of \[\sqrt {{a^2} - {x^2}} \] is equal to \[\frac{{x\sqrt {{a^2} - {x^2}} }}{2} + \frac{{{a^2}}}{2}{\sin ^{ - 1}}\left( {\frac{x}{a}} \right) + c\]
Therefore,
=\[6\left[ {\frac{1}{2} \times \sqrt {4 - {x^2}} + \frac{1}{2}\left( 4 \right){{\sin }^{ - 1}}\left( {\frac{x}{2}} \right)} \right]\]
=\[\frac{6}{2}\left[ {0 + 4{{\sin }^{ - 1}}\left( {\frac{2}{2}} \right)} \right]\]
=\[3\left[ {4{{\sin }^{ - 1}}\left( 1 \right)} \right]\]
=\[12\left( {\frac{\pi }{2}} \right)\]
Answer =\[6\pi \]
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE