
Find the centre and radius of the sphere \[{\vec r^2} - \,\vec r.(4\vec i + 2\vec j - 6\vec k) - 11 = 0\]
Answer
593.7k+ views
Hint: A sphere with center \[\left( {a,b,c} \right)\] and radius r has the equation \[\left( {x - a} \right){\text{ }} + {\text{ }}\left( {y - b} \right){\text{ }} + {\text{ }}{\left( {z - c} \right)^2} = {r^2}\]
Or x2 + y2 +z2 + 2ux + 2vy + 2wz+d=0
Where center of sphere is y\[ = {\text{ }}\left( { - u, - v, - w} \right)\]
And radius of sphere is
= \[\sqrt {{u^2} + {v^2} + {w^2} - d} \]
Complete step by step answer:
Let
\[\vec r = x\vec i + j\vec y + z\vec k\,\], and \[r = \sqrt {{x^2} + {y^2} + {z^2}} \]
\[ = {r^2} = {x^2} + {y^2} + {z^2}\] [squaring both sides]
Now dot product of \[\vec r.(4\vec i + 2\vec j - 6\vec k)\]is:
\[ = 4\vec r.\vec i + 2\vec r.\vec j - 6\vec r.\vec k\]
\[ = 4x + 2y - 6z\]----(2) \[[\vec r.\vec i = x,\,\,\vec r.\vec j = y,\,\vec r.\vec k = z]\]
Our given equation is,
\[{\vec r^2} + \vec r.(4\vec i + 2\vec j - 6\vec k) - 11 = 0\]-----(3)
Using value of 1 and 2 in equation 3
\[{x^2} + {y^2} + {z^2} - (4x + 2y - 6z) - 11 = 0\]
\[{x^2} + {y^2} + {z^2} - 4x + 2y - 6z - 11 = 0\]
General equation of the sphere is
\[{x^2} + {y^2} + {z^2} + 2ux + 2vy{\text{ }} + 2wz + d{\text{ }} = 0\;\;\;\;\;\;\;\;\;\]----(5)
On comparing 4 with 5, we get;
\[2u = - 4,{\text{ }}2v = - 2,2w = 6\]and \[d = - 11\]
= \[u{\text{ }} - \] \[\dfrac{4}{2} = - 2,v = - \dfrac{2}{2} = 1,w = \dfrac{6}{2} = 3and\] \[d = - 1\]
\[u = - 2v = - 1,w = 3and\] \[d = - 11\]
Center \[ = \left( {{\text{ }} - u{\text{ }},v, - w} \right)\;\]\[ = \]\[\left( { - ( - 2)} \right), - \left( { - 1} \right), - 3\])
\[ = \left( {2,{\text{ }}1, - 3} \right)\]
And radius \[ = \] \[\sqrt {{u^2} + {v^2} + {w^2} - d} \]
Put \[u = {\text{ }} - 2,v = {\text{ }} - 1,{\text{ }}w = 3\]and \[d = {\text{ }} - 11\]
\[ = \sqrt {{{( - 2)}^2} + {{( - 1)}^2} + {{(3)}^2} + 11} \]
\[ = \sqrt {4 + 1 + 9 + 11} \]
\[ = \sqrt {14 + 11} \]
\[ = \sqrt {25} \]
\[ = 5\]
Hence, are the center and radius of sphere.
Note: a sphere is a three-dimension shape and it is mathematically defined as a set of points from the given point called “center” with an equal distance called radius “r” in the three-dimensional space of Euclidean space. The diameter “d’ is twice the radius. The pair of points that connect the opposite sides of a sphere is called “antipodes”. The sphere is sometimes interchangeably called “ball”.
The important properties of the sphere are:
A sphere is perfectly symmetrical.
It is not a polyhedron.
All the points on the surface are equidistant from the center.
It does not have a surface of centers.
It has constant mean curvature.
It has a constant width and circumference.
“while comparing the equation with the general equation we must take care of the signs”.
Or x2 + y2 +z2 + 2ux + 2vy + 2wz+d=0
Where center of sphere is y\[ = {\text{ }}\left( { - u, - v, - w} \right)\]
And radius of sphere is
= \[\sqrt {{u^2} + {v^2} + {w^2} - d} \]
Complete step by step answer:
Let
\[\vec r = x\vec i + j\vec y + z\vec k\,\], and \[r = \sqrt {{x^2} + {y^2} + {z^2}} \]
\[ = {r^2} = {x^2} + {y^2} + {z^2}\] [squaring both sides]
Now dot product of \[\vec r.(4\vec i + 2\vec j - 6\vec k)\]is:
\[ = 4\vec r.\vec i + 2\vec r.\vec j - 6\vec r.\vec k\]
\[ = 4x + 2y - 6z\]----(2) \[[\vec r.\vec i = x,\,\,\vec r.\vec j = y,\,\vec r.\vec k = z]\]
Our given equation is,
\[{\vec r^2} + \vec r.(4\vec i + 2\vec j - 6\vec k) - 11 = 0\]-----(3)
Using value of 1 and 2 in equation 3
\[{x^2} + {y^2} + {z^2} - (4x + 2y - 6z) - 11 = 0\]
\[{x^2} + {y^2} + {z^2} - 4x + 2y - 6z - 11 = 0\]
General equation of the sphere is
\[{x^2} + {y^2} + {z^2} + 2ux + 2vy{\text{ }} + 2wz + d{\text{ }} = 0\;\;\;\;\;\;\;\;\;\]----(5)
On comparing 4 with 5, we get;
\[2u = - 4,{\text{ }}2v = - 2,2w = 6\]and \[d = - 11\]
= \[u{\text{ }} - \] \[\dfrac{4}{2} = - 2,v = - \dfrac{2}{2} = 1,w = \dfrac{6}{2} = 3and\] \[d = - 1\]
\[u = - 2v = - 1,w = 3and\] \[d = - 11\]
Center \[ = \left( {{\text{ }} - u{\text{ }},v, - w} \right)\;\]\[ = \]\[\left( { - ( - 2)} \right), - \left( { - 1} \right), - 3\])
\[ = \left( {2,{\text{ }}1, - 3} \right)\]
And radius \[ = \] \[\sqrt {{u^2} + {v^2} + {w^2} - d} \]
Put \[u = {\text{ }} - 2,v = {\text{ }} - 1,{\text{ }}w = 3\]and \[d = {\text{ }} - 11\]
\[ = \sqrt {{{( - 2)}^2} + {{( - 1)}^2} + {{(3)}^2} + 11} \]
\[ = \sqrt {4 + 1 + 9 + 11} \]
\[ = \sqrt {14 + 11} \]
\[ = \sqrt {25} \]
\[ = 5\]
Hence, are the center and radius of sphere.
Note: a sphere is a three-dimension shape and it is mathematically defined as a set of points from the given point called “center” with an equal distance called radius “r” in the three-dimensional space of Euclidean space. The diameter “d’ is twice the radius. The pair of points that connect the opposite sides of a sphere is called “antipodes”. The sphere is sometimes interchangeably called “ball”.
The important properties of the sphere are:
A sphere is perfectly symmetrical.
It is not a polyhedron.
All the points on the surface are equidistant from the center.
It does not have a surface of centers.
It has constant mean curvature.
It has a constant width and circumference.
“while comparing the equation with the general equation we must take care of the signs”.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

