Answer
Verified
469.5k+ views
Hint: Divide the letter F into 3 sections. Calculate their mass respectively. Note down coordinates of center of mass. And finally using the formula for Center of mass calculate position of center of mass.
Formula used:
$X_{ CM }=\quad \dfrac { \sum { { { m }_{ i }{ x }_{ i } } } }{ \sum { { m }_{ i } } }$
$Y_{ CM }=\quad \dfrac { \sum { { { m }_{ i }{ y }_{ i } } } }{ \sum { { m }_{ i } } }$
Complete step-by-step answer:
Figure given in the question can be simplified as:
Let mass(m) per unit area(A)of the sheet be $\sigma$
$\sigma =\dfrac { m }{ A }$ …(1)
From the figure it is clear that the metal sheet is divided into 3 sections namely 1,2 and 3.
Using equation.(1), mass of each part can be calculated.
Mass of part 1, ${ m }_{ 1 }$= $\left( 8\times 2 \right) \sigma$= 16$\sigma$
Similarly, Mass of part 2, ${ m }_{ 2 }$= $\left( 2\times 2 \right) \sigma$= 4$\sigma$
Mass of part 3, ${ m }_{ 3 }$= $\left( 4\times 2 \right) \sigma$= 8$\sigma$
The coordinates of the center of mass of part1 are (1,4), that of part2 are (3,3) and that of part3 are (4,7).
Now, we have to calculate the center of mass of the letter F in X and Y- axes.
Using formula for center of mass in X-axis,
$X_{ CM }=\quad \dfrac { \sum { { { m }_{ i }{ x }_{ i } } } }{ \sum { { m }_{ i } } }$
$ { X }_{ CM }=\quad \dfrac { { m }_{ 1 }{ x }_{ 1 }+{ m }_{ 2 }{ x }_{ 2 }+{ m }_{ 3 }{ x }_{ 3 } }{ { m }_{ 1 }+{ m }_{ 2 }+{ m }_{ 3 } }$
Substituting the values in above equation we get,
$ { X }_{ CM }=\quad \dfrac { 16\sigma \times 1\quad +\quad 4\sigma \times 3\quad +\quad 8\sigma \times 4 }{ 16\sigma \quad +\quad 4\sigma \quad +\quad 8\sigma }$
$ \therefore \quad { X }_{ CM }=\quad \dfrac { 60 }{ 28 }$
$ \therefore \quad { X }_{ CM }=\quad \dfrac { 15 }{ 7 }$ …(1)
Similarly for Y-axis, using formula for center of mass,
$Y_{ CM }=\quad \dfrac { \sum { { { m }_{ i }{ y }_{ i } } } }{ \sum { { m }_{ i } } }$
$ { Y }_{ CM }=\quad \dfrac { { m }_{ 1 }{ y }_{ 1 }+{ m }_{ 2 }{ y }_{ 2 }+{ m }_{ 3 }{ y }_{ 3 } }{ { m }_{ 1 }+{ m }_{ 2 }+{ m }_{ 3 } }$
Substituting values in above equation we get,
$Y_{ CM }=\quad \dfrac { 16\sigma \times 4\quad +\quad 4\sigma \times 3\quad +\quad 8\sigma \times 7 }{ 16\sigma \quad +\quad 4\sigma \quad +\quad 8\sigma }$
$ \therefore \quad { Y }_{ CM }=\quad \dfrac { 132 }{ 28 }$
$ \therefore \quad { Y }_{ CM }=\quad \dfrac { 33 }{ 7 }$ …(2)
So, the correct answer is “Option A”.
Note:
Draw a simplified version of the figure so that calculation becomes easier. The simplified figure helps to find the length and co-ordinates easily. Take care while finding the coordinates of the center of mass of each part. A small error in the coordinates can change the answer completely.
Formula used:
$X_{ CM }=\quad \dfrac { \sum { { { m }_{ i }{ x }_{ i } } } }{ \sum { { m }_{ i } } }$
$Y_{ CM }=\quad \dfrac { \sum { { { m }_{ i }{ y }_{ i } } } }{ \sum { { m }_{ i } } }$
Complete step-by-step answer:
Figure given in the question can be simplified as:
Let mass(m) per unit area(A)of the sheet be $\sigma$
$\sigma =\dfrac { m }{ A }$ …(1)
From the figure it is clear that the metal sheet is divided into 3 sections namely 1,2 and 3.
Using equation.(1), mass of each part can be calculated.
Mass of part 1, ${ m }_{ 1 }$= $\left( 8\times 2 \right) \sigma$= 16$\sigma$
Similarly, Mass of part 2, ${ m }_{ 2 }$= $\left( 2\times 2 \right) \sigma$= 4$\sigma$
Mass of part 3, ${ m }_{ 3 }$= $\left( 4\times 2 \right) \sigma$= 8$\sigma$
The coordinates of the center of mass of part1 are (1,4), that of part2 are (3,3) and that of part3 are (4,7).
Now, we have to calculate the center of mass of the letter F in X and Y- axes.
Using formula for center of mass in X-axis,
$X_{ CM }=\quad \dfrac { \sum { { { m }_{ i }{ x }_{ i } } } }{ \sum { { m }_{ i } } }$
$ { X }_{ CM }=\quad \dfrac { { m }_{ 1 }{ x }_{ 1 }+{ m }_{ 2 }{ x }_{ 2 }+{ m }_{ 3 }{ x }_{ 3 } }{ { m }_{ 1 }+{ m }_{ 2 }+{ m }_{ 3 } }$
Substituting the values in above equation we get,
$ { X }_{ CM }=\quad \dfrac { 16\sigma \times 1\quad +\quad 4\sigma \times 3\quad +\quad 8\sigma \times 4 }{ 16\sigma \quad +\quad 4\sigma \quad +\quad 8\sigma }$
$ \therefore \quad { X }_{ CM }=\quad \dfrac { 60 }{ 28 }$
$ \therefore \quad { X }_{ CM }=\quad \dfrac { 15 }{ 7 }$ …(1)
Similarly for Y-axis, using formula for center of mass,
$Y_{ CM }=\quad \dfrac { \sum { { { m }_{ i }{ y }_{ i } } } }{ \sum { { m }_{ i } } }$
$ { Y }_{ CM }=\quad \dfrac { { m }_{ 1 }{ y }_{ 1 }+{ m }_{ 2 }{ y }_{ 2 }+{ m }_{ 3 }{ y }_{ 3 } }{ { m }_{ 1 }+{ m }_{ 2 }+{ m }_{ 3 } }$
Substituting values in above equation we get,
$Y_{ CM }=\quad \dfrac { 16\sigma \times 4\quad +\quad 4\sigma \times 3\quad +\quad 8\sigma \times 7 }{ 16\sigma \quad +\quad 4\sigma \quad +\quad 8\sigma }$
$ \therefore \quad { Y }_{ CM }=\quad \dfrac { 132 }{ 28 }$
$ \therefore \quad { Y }_{ CM }=\quad \dfrac { 33 }{ 7 }$ …(2)
So, the correct answer is “Option A”.
Note:
Draw a simplified version of the figure so that calculation becomes easier. The simplified figure helps to find the length and co-ordinates easily. Take care while finding the coordinates of the center of mass of each part. A small error in the coordinates can change the answer completely.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers