Answer
Verified
429k+ views
Hint:The given problem can be solved by using the Henderson-Hasselbalch equation given below: ${\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} + \log \dfrac{{{\text{con}}{{\text{c}}^n}{\text{.}}\;{\text{of}}\;{\text{salt}}}}{{{\text{con}}{{\text{c}}^n}{\text{.}}\;{\text{of}}\;{\text{acid}}}}$. One can put the correct values and can calculate the change in pH to make the correct choice of answer.
Complete step by step answer:1) First of all for the determination of the change in pH, we need to first calculate the concentration of salt $\left( {{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}} \right)$ from the given moles and volume as below,
Given data,
Moles of the salt, ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa = 0}} \cdot {\text{01 Mol}}$
${\text{Volume of salt }} = 1L$
2) Now let us see the formula for the calculation of concentration as below,
${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa = }}\dfrac{{{\text{moles}}\;{\text{of}}\;{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}}}{{{\text{volume}}}}$
Now let us put the known values in the above formula we get,
${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa}} = \dfrac{{{\text{0}}{\text{.01}}\;{\text{mol}}}}{{{\text{1}}\;{\text{L}}}}$
By doing the calculation part we get,
${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa}} = 0 \cdot 01mol/L{\text{ or 0}} \cdot {\text{01 M}}$
3) Now, let us substitute the values in the Henderson-Hasselbalch equation we get,
${\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} + \log \dfrac{{{\text{conc}}{\text{.}}\;{\text{of}}\;{\text{salt}}}}{{{\text{conc}}{\text{.}}\;{\text{of}}\;{\text{acid}}}}$
By putting the known values in the above equation we get,
$pH = 4.74 + \log \dfrac{{{\text{0}}{\text{.01}}\;{\text{M}}}}{{{\text{0}}{\text{.01}}\;{\text{M}}}}$
Now by doing the calculation we get,
$pH = 4.74 + \log 1$
As the value of ${\text{log1}}$ is zero we get the above equation as below,
$pH = 4 \cdot 74$
4) Therefore, the change in the pH when ${\text{0}} \cdot {\text{01 Mol}}$ ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}$ is added to one liter of ${\text{0}} \cdot {\text{01 M}}$ ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}$ is ${\text{4}} \cdot {\text{74}}$ which shows option C as the correct choice of answer.
Note:
From the above calculated values, it can be seen that the pH and ${\text{p}}{{\text{K}}_{\text{a}}}$ values are the same. When the concentrations of acid and the conjugate base or salt are the same, i.e. when the acid is ${\text{50\% }}$ dissociated, the pH will be equal to the ${\text{p}}{{\text{K}}_{\text{a}}}$ of acid. From the above calculation, the pH value is coming out to be the same as that of ${\text{p}}{{\text{K}}_{\text{a}}}$ value which means the concentration is the same and there is no change in pH.
Complete step by step answer:1) First of all for the determination of the change in pH, we need to first calculate the concentration of salt $\left( {{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}} \right)$ from the given moles and volume as below,
Given data,
Moles of the salt, ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa = 0}} \cdot {\text{01 Mol}}$
${\text{Volume of salt }} = 1L$
2) Now let us see the formula for the calculation of concentration as below,
${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa = }}\dfrac{{{\text{moles}}\;{\text{of}}\;{\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}}}{{{\text{volume}}}}$
Now let us put the known values in the above formula we get,
${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa}} = \dfrac{{{\text{0}}{\text{.01}}\;{\text{mol}}}}{{{\text{1}}\;{\text{L}}}}$
By doing the calculation part we get,
${\text{Concentration of C}}{{\text{H}}_{\text{3}}}{\text{COONa}} = 0 \cdot 01mol/L{\text{ or 0}} \cdot {\text{01 M}}$
3) Now, let us substitute the values in the Henderson-Hasselbalch equation we get,
${\text{pH}} = {\text{p}}{{\text{K}}_{\text{a}}} + \log \dfrac{{{\text{conc}}{\text{.}}\;{\text{of}}\;{\text{salt}}}}{{{\text{conc}}{\text{.}}\;{\text{of}}\;{\text{acid}}}}$
By putting the known values in the above equation we get,
$pH = 4.74 + \log \dfrac{{{\text{0}}{\text{.01}}\;{\text{M}}}}{{{\text{0}}{\text{.01}}\;{\text{M}}}}$
Now by doing the calculation we get,
$pH = 4.74 + \log 1$
As the value of ${\text{log1}}$ is zero we get the above equation as below,
$pH = 4 \cdot 74$
4) Therefore, the change in the pH when ${\text{0}} \cdot {\text{01 Mol}}$ ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}$ is added to one liter of ${\text{0}} \cdot {\text{01 M}}$ ${\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}$ is ${\text{4}} \cdot {\text{74}}$ which shows option C as the correct choice of answer.
Note:
From the above calculated values, it can be seen that the pH and ${\text{p}}{{\text{K}}_{\text{a}}}$ values are the same. When the concentrations of acid and the conjugate base or salt are the same, i.e. when the acid is ${\text{50\% }}$ dissociated, the pH will be equal to the ${\text{p}}{{\text{K}}_{\text{a}}}$ of acid. From the above calculation, the pH value is coming out to be the same as that of ${\text{p}}{{\text{K}}_{\text{a}}}$ value which means the concentration is the same and there is no change in pH.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE