How do you find the coefficient of $x$ in the expansion of ${(x + 3)^5}$?
Answer
Verified
442.8k+ views
Hint: We are going to solve this question by first mentioning the formula that we will be using in this question. Then mention all the given terms by comparing values from the question. And then finally evaluate the coefficient of $x$.
Complete step-by-step solution:
First we will start off by using the binomial theorem which is given by \[{(x + y)^n} = \sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}{c}}
n \\
k
\end{array}} \right){x^{n - k}}{y^k}} \] where \[\left( {\begin{array}{*{20}{c}}
n \\
k
\end{array}} \right) = \dfrac{{n!}}{{k!(n - k)!}}\]
Now, here for $n = 5$ and $y = 3$ we are looking for the coefficient of ${x^1}$. This means we need
$
n - k = 1 \\
\,\,\,\,\,\,\,k = 4 \\
$
Now, if we substitute the values in the above mentioned formula, then we get,
\[
= \left( {\begin{array}{*{20}{c}}
5 \\
4
\end{array}} \right){x^1}{.3^4} \\
= \dfrac{{5!}}{{4!1!}}.81.x \\
= 405x \\
\]
Hence, the coefficient of $x$ in the expansion of ${(x + 3)^5}$ is \[405x\].
Additional information: The binomial theorem or expansion describes the algebraic expansion of a binomial. According to the theorem, it is possible to expand the polynomial ${(x + y)^n}$ into a sum involving terms of the form $a{x^b}{y^c}$, where the exponents $b$ and $c$ are non negative integers with $b + c = n$, and the coefficient of $a$ of each term is a specific positive integer depending on $n$ and $b$. The coefficients that appear in the binomial expansion are called binomial coefficients. The binomial coefficient can be interpreted as the number of ways to choose $k$ elements from an n-element set. As the power increases the expansion becomes lengthy and tedious to calculate. A binomial expression that has been raised to a very large power can be easily calculated with the help of Binomial theorem.
Note: While relating such terms, make sure you relate along with the powers and the respective signs. While substituting any terms, substitute such that the expression becomes easier to solve. While mentioning any formula, always check if there are any exceptions.
Complete step-by-step solution:
First we will start off by using the binomial theorem which is given by \[{(x + y)^n} = \sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}{c}}
n \\
k
\end{array}} \right){x^{n - k}}{y^k}} \] where \[\left( {\begin{array}{*{20}{c}}
n \\
k
\end{array}} \right) = \dfrac{{n!}}{{k!(n - k)!}}\]
Now, here for $n = 5$ and $y = 3$ we are looking for the coefficient of ${x^1}$. This means we need
$
n - k = 1 \\
\,\,\,\,\,\,\,k = 4 \\
$
Now, if we substitute the values in the above mentioned formula, then we get,
\[
= \left( {\begin{array}{*{20}{c}}
5 \\
4
\end{array}} \right){x^1}{.3^4} \\
= \dfrac{{5!}}{{4!1!}}.81.x \\
= 405x \\
\]
Hence, the coefficient of $x$ in the expansion of ${(x + 3)^5}$ is \[405x\].
Additional information: The binomial theorem or expansion describes the algebraic expansion of a binomial. According to the theorem, it is possible to expand the polynomial ${(x + y)^n}$ into a sum involving terms of the form $a{x^b}{y^c}$, where the exponents $b$ and $c$ are non negative integers with $b + c = n$, and the coefficient of $a$ of each term is a specific positive integer depending on $n$ and $b$. The coefficients that appear in the binomial expansion are called binomial coefficients. The binomial coefficient can be interpreted as the number of ways to choose $k$ elements from an n-element set. As the power increases the expansion becomes lengthy and tedious to calculate. A binomial expression that has been raised to a very large power can be easily calculated with the help of Binomial theorem.
Note: While relating such terms, make sure you relate along with the powers and the respective signs. While substituting any terms, substitute such that the expression becomes easier to solve. While mentioning any formula, always check if there are any exceptions.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE