Find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\]
Answer
Verified
483k+ views
Hint: First we should expand the expansion \[{{\left( 1-x \right)}^{16}}\]. We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]. By using this formula, we should expand the expansion \[{{\left( 1-x \right)}^{16}}\]. Now we should expand the expansion \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\]. Now we should separate the coefficients of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] and this should be written in the form of \[1+ax+b{{x}^{2}}+c{{x}^{3}}+.......\]. Now we should write the coefficient of x. We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]. Now, we should use this formula, to find the coefficient of x.
Complete step-by-step answer:
Before solving the question, we should know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\].
From the question, it is given that we should find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\].
We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]
\[\Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( 1-3x+7{{x}^{2}} \right)\left( 1{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right)\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{-}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{-}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}-...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{-}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{-}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}-...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)-\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}+{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}-\left( ^{16}{{C}_{3}}+{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}+{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}-......-\left( ^{16}{{C}_{16}}+{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( {{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}-\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( -1 \right)\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{0!\left( 16-1 \right)!}+3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16.15!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=-1\left( 16+3\left( 1 \right) \right) \\
& \Rightarrow T=-1\left( 16+3 \right) \\
& \Rightarrow T=-19......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to -19.
Note: Students may have a misconception that \[{{\left( 1-x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{+}^{n}}{{C}_{3}}{{x}^{3}}+......{{+}^{n}}{{C}_{r}}{{x}^{r}}+.....{{+}^{n}}{{C}_{n}}{{x}^{n}}\]. If this misconception is followed, then we will get a wrong answer as shown below:
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{+}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{+}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}+...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{+}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{+}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}+...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)+\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}-{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}+\left( ^{16}{{C}_{3}}-{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}-{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}+......+\left( ^{16}{{C}_{16}}-{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( -{{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}+\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]
From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16!}{0!\left( 16-1 \right)!}-3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( \dfrac{16!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16.15!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=\left( 16-3\left( 1 \right) \right) \\
& \Rightarrow T=\left( 16-3 \right) \\
& \Rightarrow T=13......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to 13.
But we know that the coefficient of x is equal to -19 but we got the coefficient of x is equal to 13. So, this misconception should be avoided.
Complete step-by-step answer:
Before solving the question, we should know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\].
From the question, it is given that we should find the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\].
We know that \[{{\left( 1-x \right)}^{n}}=1{{-}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{-}^{n}}{{C}_{3}}{{x}^{3}}+......+{{\left( -1 \right)}^{r}}^{n}{{C}_{r}}{{x}^{r}}+.....+{{\left( -1 \right)}^{n}}^{n}{{C}_{n}}{{x}^{n}}\]
\[\Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( 1-3x+7{{x}^{2}} \right)\left( 1{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right)\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{-}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{-}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}-...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{-}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{-}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}-...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{-}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{-}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}-...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)-\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}+{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}-\left( ^{16}{{C}_{3}}+{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}+{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}-......-\left( ^{16}{{C}_{16}}+{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( {{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}-\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( -1 \right)\left( ^{16}{{C}_{1}}+{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{0!\left( 16-1 \right)!}+3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( -1 \right)\left( \dfrac{16.15!}{\left( 15 \right)!}+3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=-1\left( 16+3\left( 1 \right) \right) \\
& \Rightarrow T=-1\left( 16+3 \right) \\
& \Rightarrow T=-19......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to -19.
Note: Students may have a misconception that \[{{\left( 1-x \right)}^{n}}=1{{+}^{n}}{{C}_{1}}x{{+}^{n}}{{C}_{2}}{{x}^{2}}{{+}^{n}}{{C}_{3}}{{x}^{3}}+......{{+}^{n}}{{C}_{r}}{{x}^{r}}+.....{{+}^{n}}{{C}_{n}}{{x}^{n}}\]. If this misconception is followed, then we will get a wrong answer as shown below:
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3x\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ +7}{{\text{x}}^{2}}\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}}{{+}^{16}}{{C}_{1}}x{{+}^{16}}{{C}_{2}}{{x}^{2}}{{+}^{16}}{{C}_{3}}{{x}^{3}}{{+}^{16}}{{C}_{4}}{{x}^{4}}+...........{{+}^{16}}{{C}_{16}}{{x}^{16}} \right) \\
& \text{ }-3\left( ^{16}{{C}_{0}}x{{+}^{16}}{{C}_{1}}{{x}^{2}}{{+}^{16}}{{C}_{2}}{{x}^{3}}{{+}^{16}}{{C}_{3}}{{x}^{4}}{{+}^{16}}{{C}_{4}}{{x}^{5}}+...........{{+}^{16}}{{C}_{16}}{{x}^{17}} \right) \\
& \text{ +7}\left( ^{16}{{C}_{0}}{{x}^{2}}{{+}^{16}}{{C}_{1}}{{x}^{3}}{{+}^{16}}{{C}_{2}}{{x}^{4}}{{+}^{16}}{{C}_{3}}{{x}^{5}}{{+}^{16}}{{C}_{4}}{{x}^{6}}+...........{{+}^{16}}{{C}_{16}}{{x}^{18}} \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}=\left( ^{16}{{C}_{0}} \right)+\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)x+\left( ^{16}{{C}_{2}}-{{3}^{16}}{{C}_{1}}+{{7}^{16}}{{C}_{0}} \right){{x}^{2}}+\left( ^{16}{{C}_{3}}-{{3}^{16}}{{C}_{2}}+{{7}^{16}}{{C}_{1}} \right){{x}^{3}} \\
& \text{ }+\left( ^{16}{{C}_{4}}-{{3}^{16}}{{C}_{4}}+{{7}^{16}}{{C}_{2}} \right){{x}^{4}}+......+\left( ^{16}{{C}_{16}}-{{3}^{16}}{{C}_{15}}+{{7}^{16}}{{C}_{14}} \right){{x}^{16}} \\
& \text{ +}\left( -{{3}^{16}}{{C}_{16}}+{{7}^{16}}{{C}_{15}} \right){{x}^{17}}+\left( {{7}^{16}}{{C}_{15}} \right){{x}^{18}} \\
\end{align}\]
From the question, it is clear that we should find the coefficient of x.
So, let us assume the coefficient of x is equal to T.
\[\Rightarrow T=\left( ^{16}{{C}_{1}}-{{3}^{16}}{{C}_{0}} \right)\]
We know that \[^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16!}{0!\left( 16-1 \right)!}-3\left( \dfrac{16!}{0!\left( 16-0 \right)!} \right) \right) \\
& \Rightarrow T=\left( \dfrac{16!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
\end{align}\]
\[\begin{align}
& \Rightarrow T=\left( \dfrac{16.15!}{\left( 15 \right)!}-3\left( \dfrac{16!}{\left( 16 \right)!} \right) \right) \\
& \Rightarrow T=\left( 16-3\left( 1 \right) \right) \\
& \Rightarrow T=\left( 16-3 \right) \\
& \Rightarrow T=13......(1) \\
\end{align}\]
So, from equation (1) it is clear that the coefficient of x in the expansion of \[\left( 1-3x+7{{x}^{2}} \right){{\left( 1-x \right)}^{16}}\] is equal to 13.
But we know that the coefficient of x is equal to -19 but we got the coefficient of x is equal to 13. So, this misconception should be avoided.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE