Answer
Verified
496.8k+ views
Hint: For finding the coefficient of ${{\text{x}}^3}$, we have to first expand the given algebraic expression. The given algebraic expression is in the form of ${\left( {{\text{a + b + c}}} \right)^3}$. So to get the term of different powers, we have to expand this expression. After expanding, collect the terms with power 3.
Complete step-by-step answer:
In the question, we have to find the coefficient of ${{\text{x}}^3}$. The algebraic expression given is:
${\left( {1 + {\text{x + }}{{\text{x}}^2}} \right)^3}.$
Now to get the coefficient of ${{\text{x}}^3}$, we have to first expand the given expression.
The given algebraic expression is in the form of ${\left( {{\text{a + b + c}}} \right)^3}$ and we know that:
${\left( {{\text{a + b + c}}} \right)^3} = {{\text{a}}^3} + {{\text{b}}^3} + {{\text{c}}^3} + 3\left( {{\text{a + b}}} \right)\left( {{\text{b + c}}} \right)\left( {{\text{c + a}}} \right).$
Putting the value of a, b and c in the above identity, we get:
${(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {({{\text{x}}^2})^3} + 3\left( {{\text{1 + x}}} \right)\left( {{\text{x + }}{{\text{x}}^2}} \right)\left( {{{\text{x}}^2}{\text{ + 1}}} \right)$
On further expanding the above expression, we get:
\[
{(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{\text{1 + x}}} \right)\left( {{{\text{x}}^4} + {{\text{x}}^3} + {{\text{x}}^2} + {\text{x}}} \right) \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{{\text{x}}^5} + 2{{\text{x}}^4} + 2{{\text{x}}^3} + 2{{\text{x}}^2} + {\text{x}}} \right) \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 6{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x}} \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}{\text{.}} \\
{\text{So, the final expression that we get is}}:
\{{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}\]----- (1)
In the algebraic expression given by equation 1:
The coefficient of ${{\text{x}}^3}$ is 7.
Note: In this type of question where the polynomial is not given in expanded form. We have to first expand the given algebraic expression into standard polynomial form using required algebraic identities. After this, collect the terms having power 3. Its coefficient will be the required answer.
Complete step-by-step answer:
In the question, we have to find the coefficient of ${{\text{x}}^3}$. The algebraic expression given is:
${\left( {1 + {\text{x + }}{{\text{x}}^2}} \right)^3}.$
Now to get the coefficient of ${{\text{x}}^3}$, we have to first expand the given expression.
The given algebraic expression is in the form of ${\left( {{\text{a + b + c}}} \right)^3}$ and we know that:
${\left( {{\text{a + b + c}}} \right)^3} = {{\text{a}}^3} + {{\text{b}}^3} + {{\text{c}}^3} + 3\left( {{\text{a + b}}} \right)\left( {{\text{b + c}}} \right)\left( {{\text{c + a}}} \right).$
Putting the value of a, b and c in the above identity, we get:
${(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {({{\text{x}}^2})^3} + 3\left( {{\text{1 + x}}} \right)\left( {{\text{x + }}{{\text{x}}^2}} \right)\left( {{{\text{x}}^2}{\text{ + 1}}} \right)$
On further expanding the above expression, we get:
\[
{(1 + {\text{x + }}{{\text{x}}^2})^3} = {1^3} + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{\text{1 + x}}} \right)\left( {{{\text{x}}^4} + {{\text{x}}^3} + {{\text{x}}^2} + {\text{x}}} \right) \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3\left( {{{\text{x}}^5} + 2{{\text{x}}^4} + 2{{\text{x}}^3} + 2{{\text{x}}^2} + {\text{x}}} \right) \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = 1 + {{\text{x}}^3} + {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 6{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x}} \\
{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}{\text{.}} \\
{\text{So, the final expression that we get is}}:
\{{(1 + {\text{x + }}{{\text{x}}^2})^3} = {{\text{x}}^6} + 3{{\text{x}}^5} + 6{{\text{x}}^4} + 7{{\text{x}}^3} + 6{{\text{x}}^2} + 3{\text{x + 1}}\]----- (1)
In the algebraic expression given by equation 1:
The coefficient of ${{\text{x}}^3}$ is 7.
Note: In this type of question where the polynomial is not given in expanded form. We have to first expand the given algebraic expression into standard polynomial form using required algebraic identities. After this, collect the terms having power 3. Its coefficient will be the required answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE