
Find the coefficient of ${{x}^{n}}$ term in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$?
(a) $\dfrac{{{2}^{n}}}{2!}$
(b) n+1
(c) n
(d) 2n
Answer
474.3k+ views
Hint: We start solving the by recalling the binomial expansion for the negative exponents as \[{{\left( 1+x \right)}^{-a}}=1+\dfrac{\left( -a \right)}{1}x+\dfrac{\left( -a \right)\left( -a-1 \right)}{2\times 1}{{x}^{2}}+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)}{3\times 2\times 1}{{x}^{3}}+...+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}{{x}^{k}}+...\infty \]. We then find the general term of this expansion and the coefficient of it. We then substitute $a=2$ and $k=n$ to find the coefficient of ${{x}^{n}}$ in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$. We then check what will be the results if n is odd and n is even to get the required result.
Complete step by step answer:
According to the problem, we need to find the coefficient of ${{x}^{n}}$ term in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$.
We know that the binomial expansion of ${{\left( 1+x \right)}^{-a}}$ is defined as \[{{\left( 1+x \right)}^{-a}}=1+\dfrac{\left( -a \right)}{1}x+\dfrac{\left( -a \right)\left( -a-1 \right)}{2\times 1}{{x}^{2}}+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)}{3\times 2\times 1}{{x}^{3}}+...+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}{{x}^{k}}+...\infty \] for $\left| x \right|<1$.
We can see that the coefficient of the ${{x}^{k}}$ term is \[\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}\] ---(1).
Let us compare the expansion ${{\left( 1+x \right)}^{-2}}$ with ${{\left( 1+x \right)}^{-a}}$.
So, we get $a=2$. We substitute this value of a in the equation (1) to find the coefficient of ${{x}^{k}}$ in the binomial expansion ${{\left( 1+x \right)}^{-2}}$.
So, we get the coefficient of the ${{x}^{k}}$ term in the binomial expansion ${{\left( 1+x \right)}^{-2}}$ as \[\dfrac{\left( -2 \right)\left( -2-1 \right)\left( -2-2 \right)...\left( -2-k+1 \right)}{k\times ...\times 3\times 2\times 1}=\dfrac{\left( -2 \right)\left( -3 \right)\left( -4 \right)...\left( -1-k \right)}{k\times ...\times 3\times 2\times 1}={{\left( -1 \right)}^{k}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( k+1 \right)}{k\times ...\times 3\times 2\times 1}\].
Now, we need to find the coefficient of ${{x}^{n}}$ term in the binomial expansion ${{\left( 1+x \right)}^{-2}}$.
Let us assume n is odd. So, we get coefficient as \[{{\left( -1 \right)}^{n}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( n+1 \right)}{n\times ...\times 3\times 2\times 1}=\left( -1 \right)\left( n+1 \right)=-n-1\].
Now, let us assume n is even. We get coefficient as \[{{\left( -1 \right)}^{n}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( n+1 \right)}{n\times ...\times 3\times 2\times 1}=\left( 1 \right)\left( n+1 \right)=n+1\].
We can see that the given options have only one answer which we get only when n is even.
∴ The coefficient of ${{x}^{n}}$ term in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$ is $n+1$.
So, the correct answer is “Option b”.
Note: We should know that the expansion of ${{\left( 1+x \right)}^{-a}}$ will have infinite terms and is valid only if x satisfies the condition $\left| x \right|<1$. Since the condition $\left| x \right|<1$ is mentioned in the problem, we assume that the value of x lies in it. We should check the cases when the value of n is even and when n is odd while solving this type of problem. Similarly, we can expect problems to find the coefficient of ${{x}^{n}}$ in the binomial expansion ${{\left( 1+x \right)}^{-\dfrac{1}{2}}}$.
Complete step by step answer:
According to the problem, we need to find the coefficient of ${{x}^{n}}$ term in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$.
We know that the binomial expansion of ${{\left( 1+x \right)}^{-a}}$ is defined as \[{{\left( 1+x \right)}^{-a}}=1+\dfrac{\left( -a \right)}{1}x+\dfrac{\left( -a \right)\left( -a-1 \right)}{2\times 1}{{x}^{2}}+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)}{3\times 2\times 1}{{x}^{3}}+...+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}{{x}^{k}}+...\infty \] for $\left| x \right|<1$.
We can see that the coefficient of the ${{x}^{k}}$ term is \[\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}\] ---(1).
Let us compare the expansion ${{\left( 1+x \right)}^{-2}}$ with ${{\left( 1+x \right)}^{-a}}$.
So, we get $a=2$. We substitute this value of a in the equation (1) to find the coefficient of ${{x}^{k}}$ in the binomial expansion ${{\left( 1+x \right)}^{-2}}$.
So, we get the coefficient of the ${{x}^{k}}$ term in the binomial expansion ${{\left( 1+x \right)}^{-2}}$ as \[\dfrac{\left( -2 \right)\left( -2-1 \right)\left( -2-2 \right)...\left( -2-k+1 \right)}{k\times ...\times 3\times 2\times 1}=\dfrac{\left( -2 \right)\left( -3 \right)\left( -4 \right)...\left( -1-k \right)}{k\times ...\times 3\times 2\times 1}={{\left( -1 \right)}^{k}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( k+1 \right)}{k\times ...\times 3\times 2\times 1}\].
Now, we need to find the coefficient of ${{x}^{n}}$ term in the binomial expansion ${{\left( 1+x \right)}^{-2}}$.
Let us assume n is odd. So, we get coefficient as \[{{\left( -1 \right)}^{n}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( n+1 \right)}{n\times ...\times 3\times 2\times 1}=\left( -1 \right)\left( n+1 \right)=-n-1\].
Now, let us assume n is even. We get coefficient as \[{{\left( -1 \right)}^{n}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( n+1 \right)}{n\times ...\times 3\times 2\times 1}=\left( 1 \right)\left( n+1 \right)=n+1\].
We can see that the given options have only one answer which we get only when n is even.
∴ The coefficient of ${{x}^{n}}$ term in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$ is $n+1$.
So, the correct answer is “Option b”.
Note: We should know that the expansion of ${{\left( 1+x \right)}^{-a}}$ will have infinite terms and is valid only if x satisfies the condition $\left| x \right|<1$. Since the condition $\left| x \right|<1$ is mentioned in the problem, we assume that the value of x lies in it. We should check the cases when the value of n is even and when n is odd while solving this type of problem. Similarly, we can expect problems to find the coefficient of ${{x}^{n}}$ in the binomial expansion ${{\left( 1+x \right)}^{-\dfrac{1}{2}}}$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
