Find the coefficient of ${{x}^{n}}$ term in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$?
(a) $\dfrac{{{2}^{n}}}{2!}$
(b) n+1
(c) n
(d) 2n
Answer
Verified
457.2k+ views
Hint: We start solving the by recalling the binomial expansion for the negative exponents as \[{{\left( 1+x \right)}^{-a}}=1+\dfrac{\left( -a \right)}{1}x+\dfrac{\left( -a \right)\left( -a-1 \right)}{2\times 1}{{x}^{2}}+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)}{3\times 2\times 1}{{x}^{3}}+...+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}{{x}^{k}}+...\infty \]. We then find the general term of this expansion and the coefficient of it. We then substitute $a=2$ and $k=n$ to find the coefficient of ${{x}^{n}}$ in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$. We then check what will be the results if n is odd and n is even to get the required result.
Complete step by step answer:
According to the problem, we need to find the coefficient of ${{x}^{n}}$ term in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$.
We know that the binomial expansion of ${{\left( 1+x \right)}^{-a}}$ is defined as \[{{\left( 1+x \right)}^{-a}}=1+\dfrac{\left( -a \right)}{1}x+\dfrac{\left( -a \right)\left( -a-1 \right)}{2\times 1}{{x}^{2}}+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)}{3\times 2\times 1}{{x}^{3}}+...+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}{{x}^{k}}+...\infty \] for $\left| x \right|<1$.
We can see that the coefficient of the ${{x}^{k}}$ term is \[\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}\] ---(1).
Let us compare the expansion ${{\left( 1+x \right)}^{-2}}$ with ${{\left( 1+x \right)}^{-a}}$.
So, we get $a=2$. We substitute this value of a in the equation (1) to find the coefficient of ${{x}^{k}}$ in the binomial expansion ${{\left( 1+x \right)}^{-2}}$.
So, we get the coefficient of the ${{x}^{k}}$ term in the binomial expansion ${{\left( 1+x \right)}^{-2}}$ as \[\dfrac{\left( -2 \right)\left( -2-1 \right)\left( -2-2 \right)...\left( -2-k+1 \right)}{k\times ...\times 3\times 2\times 1}=\dfrac{\left( -2 \right)\left( -3 \right)\left( -4 \right)...\left( -1-k \right)}{k\times ...\times 3\times 2\times 1}={{\left( -1 \right)}^{k}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( k+1 \right)}{k\times ...\times 3\times 2\times 1}\].
Now, we need to find the coefficient of ${{x}^{n}}$ term in the binomial expansion ${{\left( 1+x \right)}^{-2}}$.
Let us assume n is odd. So, we get coefficient as \[{{\left( -1 \right)}^{n}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( n+1 \right)}{n\times ...\times 3\times 2\times 1}=\left( -1 \right)\left( n+1 \right)=-n-1\].
Now, let us assume n is even. We get coefficient as \[{{\left( -1 \right)}^{n}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( n+1 \right)}{n\times ...\times 3\times 2\times 1}=\left( 1 \right)\left( n+1 \right)=n+1\].
We can see that the given options have only one answer which we get only when n is even.
∴ The coefficient of ${{x}^{n}}$ term in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$ is $n+1$.
So, the correct answer is “Option b”.
Note: We should know that the expansion of ${{\left( 1+x \right)}^{-a}}$ will have infinite terms and is valid only if x satisfies the condition $\left| x \right|<1$. Since the condition $\left| x \right|<1$ is mentioned in the problem, we assume that the value of x lies in it. We should check the cases when the value of n is even and when n is odd while solving this type of problem. Similarly, we can expect problems to find the coefficient of ${{x}^{n}}$ in the binomial expansion ${{\left( 1+x \right)}^{-\dfrac{1}{2}}}$.
Complete step by step answer:
According to the problem, we need to find the coefficient of ${{x}^{n}}$ term in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$.
We know that the binomial expansion of ${{\left( 1+x \right)}^{-a}}$ is defined as \[{{\left( 1+x \right)}^{-a}}=1+\dfrac{\left( -a \right)}{1}x+\dfrac{\left( -a \right)\left( -a-1 \right)}{2\times 1}{{x}^{2}}+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)}{3\times 2\times 1}{{x}^{3}}+...+\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}{{x}^{k}}+...\infty \] for $\left| x \right|<1$.
We can see that the coefficient of the ${{x}^{k}}$ term is \[\dfrac{\left( -a \right)\left( -a-1 \right)\left( -a-2 \right)...\left( -a-k+1 \right)}{k\times ...\times 3\times 2\times 1}\] ---(1).
Let us compare the expansion ${{\left( 1+x \right)}^{-2}}$ with ${{\left( 1+x \right)}^{-a}}$.
So, we get $a=2$. We substitute this value of a in the equation (1) to find the coefficient of ${{x}^{k}}$ in the binomial expansion ${{\left( 1+x \right)}^{-2}}$.
So, we get the coefficient of the ${{x}^{k}}$ term in the binomial expansion ${{\left( 1+x \right)}^{-2}}$ as \[\dfrac{\left( -2 \right)\left( -2-1 \right)\left( -2-2 \right)...\left( -2-k+1 \right)}{k\times ...\times 3\times 2\times 1}=\dfrac{\left( -2 \right)\left( -3 \right)\left( -4 \right)...\left( -1-k \right)}{k\times ...\times 3\times 2\times 1}={{\left( -1 \right)}^{k}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( k+1 \right)}{k\times ...\times 3\times 2\times 1}\].
Now, we need to find the coefficient of ${{x}^{n}}$ term in the binomial expansion ${{\left( 1+x \right)}^{-2}}$.
Let us assume n is odd. So, we get coefficient as \[{{\left( -1 \right)}^{n}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( n+1 \right)}{n\times ...\times 3\times 2\times 1}=\left( -1 \right)\left( n+1 \right)=-n-1\].
Now, let us assume n is even. We get coefficient as \[{{\left( -1 \right)}^{n}}\dfrac{\left( 2 \right)\left( 3 \right)\left( 4 \right)...\left( n+1 \right)}{n\times ...\times 3\times 2\times 1}=\left( 1 \right)\left( n+1 \right)=n+1\].
We can see that the given options have only one answer which we get only when n is even.
∴ The coefficient of ${{x}^{n}}$ term in the binomial expansion of ${{\left( 1+x \right)}^{-2}}$ is $n+1$.
So, the correct answer is “Option b”.
Note: We should know that the expansion of ${{\left( 1+x \right)}^{-a}}$ will have infinite terms and is valid only if x satisfies the condition $\left| x \right|<1$. Since the condition $\left| x \right|<1$ is mentioned in the problem, we assume that the value of x lies in it. We should check the cases when the value of n is even and when n is odd while solving this type of problem. Similarly, we can expect problems to find the coefficient of ${{x}^{n}}$ in the binomial expansion ${{\left( 1+x \right)}^{-\dfrac{1}{2}}}$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE