How do you find the common ratio of a geometric sequence on a calculator?
Answer
Verified
443.4k+ views
Hint: Assuming the terms are nonzero, we can find the common ratio $r$on a calculator by taking any two consecutive terms and dividing the later one by the earlier one.
Complete step by step solution:
A geometric sequence is a sequence with a common ratio $r$ between adjacent terms,
That is a sequence of the form ${a_1}$, ${a_1}$ $r$, ${a_1}$$r_{}^2$, …${a_1}$$r_{}^n$
Then assuming the terms are nonzero, dividing any term by the prior term give the ratio:
$\Rightarrow$ $\dfrac{{{a_1}r_{}^n}}{{{a_1}r_{}^{n - 1}}}$
Cancelling ${a_1}$from numerator and denominator we get,
$\Rightarrow$ $\dfrac{{r_{}^n}}{{r_{}^{n - 1}}}$
Now by law of exponential $\dfrac{{a_{}^m}}{{a_{}^n}}$= $a_{}^{m - n}$
We can write $\dfrac{{r_{}^n}}{{r_{}^{n - 1}}}$ as
$\Rightarrow$ $r_{}^{n - (n - 1)}$
$\Rightarrow$ $r_{}^{n - n + 1}$
$\Rightarrow$ $r_{}^1$ = $r$
To find $r$ on a calculator, then take any two consecutive terms and divide the later one by the earlier one.
So, $r$= $\dfrac{{{a_{n + 1}}}}{{{a_n}}}$.
Note:
More generally, given any two terms ${a_1}r_{}^m$ and${a_1}r_{}^n$, $m < n$
We can find $r$by dividing $\dfrac{{{a_1}r_{}^n}}{{{a_1}r_{}^m}}$ and taking the ${(n - m)^{th}}$ root:
$\Rightarrow$ $(\dfrac{{{a_1}r_{}^n}}{{{a_1}r_{}^m}})_{}^{\dfrac{1}{{n - m}}}$ = $(r_{}^{n - m})_{}^{\dfrac{1}{{n - m}}}$ = $r_{}^{\dfrac{{n - m}}{{n - m}}}$ = $r_{}^1$= $r$.
Complete step by step solution:
A geometric sequence is a sequence with a common ratio $r$ between adjacent terms,
That is a sequence of the form ${a_1}$, ${a_1}$ $r$, ${a_1}$$r_{}^2$, …${a_1}$$r_{}^n$
Then assuming the terms are nonzero, dividing any term by the prior term give the ratio:
$\Rightarrow$ $\dfrac{{{a_1}r_{}^n}}{{{a_1}r_{}^{n - 1}}}$
Cancelling ${a_1}$from numerator and denominator we get,
$\Rightarrow$ $\dfrac{{r_{}^n}}{{r_{}^{n - 1}}}$
Now by law of exponential $\dfrac{{a_{}^m}}{{a_{}^n}}$= $a_{}^{m - n}$
We can write $\dfrac{{r_{}^n}}{{r_{}^{n - 1}}}$ as
$\Rightarrow$ $r_{}^{n - (n - 1)}$
$\Rightarrow$ $r_{}^{n - n + 1}$
$\Rightarrow$ $r_{}^1$ = $r$
To find $r$ on a calculator, then take any two consecutive terms and divide the later one by the earlier one.
So, $r$= $\dfrac{{{a_{n + 1}}}}{{{a_n}}}$.
Note:
More generally, given any two terms ${a_1}r_{}^m$ and${a_1}r_{}^n$, $m < n$
We can find $r$by dividing $\dfrac{{{a_1}r_{}^n}}{{{a_1}r_{}^m}}$ and taking the ${(n - m)^{th}}$ root:
$\Rightarrow$ $(\dfrac{{{a_1}r_{}^n}}{{{a_1}r_{}^m}})_{}^{\dfrac{1}{{n - m}}}$ = $(r_{}^{n - m})_{}^{\dfrac{1}{{n - m}}}$ = $r_{}^{\dfrac{{n - m}}{{n - m}}}$ = $r_{}^1$= $r$.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE