Answer
Verified
498k+ views
Hint: When three vertices of a triangle are \[A({{x}_{1,}}{{y}_{1}}),B({{x}_{2}},{{y}_{2}}),C({{x}_{3}},{{y}_{3}})\], then the centroid of the triangle is given by the formula, \[G\left(\dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\]. Substitute the given value in the formula accordingly.
We are supposed to find the centroid of the triangle; whose vertices are (0, 6), (8, 12) and (8, 0).
First, let us understand what a centroid is:
The centroid of a triangle is one of the points of concurrency of a triangle. It is the point where all the three medians of a triangle intersect. Median is a line segment which is drawn from a vertex to the midpoint of the opposite side.
Important properties of centroid are:
It is always situated inside the triangle like the incenter.
The centroid of a triangle divides each median in a ratio of 2:1 in single words; the centroid will generally be \[\dfrac{2}{3}rd\] of the way along any median.
Now, let us see how to compute the centroid of a triangle.
The centroid, also known as the center of gravity of the triangle can be found by finding the average of x-coordinates and y-coordinates values of all the three vertices of the triangle.
Centroid of a triangle with vertices\[A({{x}_{1,}}{{y}_{1}}),B({{x}_{2}},{{y}_{2}})andC({{x}_{3}},{{y}_{3}})\]is given as:\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\]
By substituting the given vertices (0, 6), (8, 12) and (8, 0) in the centroid formula, we get:
Centroid \[=\left( \dfrac{0+8+8}{3},\dfrac{6+12+0}{3} \right)\]
Centroid \[=\left( \dfrac{16}{3},\dfrac{18}{3} \right)\]
Centroid \[=\left( \dfrac{16}{3},6 \right)\]
So, the centroid of the given triangle with the vertices (0, 6), (8, 12) and (8, 0) is \[\left( \dfrac{16}{3},6 \right)\].
Note: Alternatively, we can find the median equations from any two vertices of the triangle and solve these median equations to find the intersection point of them. Since,the centroid is nothing but the intersection of median line segments.
We are supposed to find the centroid of the triangle; whose vertices are (0, 6), (8, 12) and (8, 0).
First, let us understand what a centroid is:
The centroid of a triangle is one of the points of concurrency of a triangle. It is the point where all the three medians of a triangle intersect. Median is a line segment which is drawn from a vertex to the midpoint of the opposite side.
Important properties of centroid are:
It is always situated inside the triangle like the incenter.
The centroid of a triangle divides each median in a ratio of 2:1 in single words; the centroid will generally be \[\dfrac{2}{3}rd\] of the way along any median.
Now, let us see how to compute the centroid of a triangle.
The centroid, also known as the center of gravity of the triangle can be found by finding the average of x-coordinates and y-coordinates values of all the three vertices of the triangle.
Centroid of a triangle with vertices\[A({{x}_{1,}}{{y}_{1}}),B({{x}_{2}},{{y}_{2}})andC({{x}_{3}},{{y}_{3}})\]is given as:\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\]
By substituting the given vertices (0, 6), (8, 12) and (8, 0) in the centroid formula, we get:
Centroid \[=\left( \dfrac{0+8+8}{3},\dfrac{6+12+0}{3} \right)\]
Centroid \[=\left( \dfrac{16}{3},\dfrac{18}{3} \right)\]
Centroid \[=\left( \dfrac{16}{3},6 \right)\]
So, the centroid of the given triangle with the vertices (0, 6), (8, 12) and (8, 0) is \[\left( \dfrac{16}{3},6 \right)\].
Note: Alternatively, we can find the median equations from any two vertices of the triangle and solve these median equations to find the intersection point of them. Since,the centroid is nothing but the intersection of median line segments.
Recently Updated Pages
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
What is the distance between the circumcentre and the class 10 maths JEE_Main
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
A Paragraph on Pollution in about 100-150 Words
Name the scientist who invented the electric cell and class 10 physics CBSE
Is curdling of milk a physical change or chemical class 10 chemistry CBSE
Discuss the main reasons for poverty in India