
Find the coordinates of the circumcentre of the triangle whose vertices are $\left( {8,6} \right),\left( {8, - 2} \right)$ and\[PA = PB = PC = \sqrt {{{\left( {5 - 8} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 5\]$\left( {2, - 2} \right)$. Also, find its circum-radius.
Answer
622.2k+ views
Hint: A circumcentre of a triangle is equidistant from all the vertices of the triangle.
Keeping in mind the above point, let us consider $A\left( {8,6} \right),B\left( {8, - 2} \right)$ and $C\left( {2, - 2} \right)$ as the vertices of the given triangle. If we consider a point \[P\left( {x,y} \right)\] which is equidistant from all three vertices,
Then,
$PA = PB = PC$
Now we’ll use the formula to find the length of \[PA\], \[PB\] and \[PC\] equate them, to simplify the calculations we are going to square the equations.
Therefore,
\[ \Rightarrow P{A^2} = P{B^2} = P{C^2}\]
Now let us take the first two terms and calculate the length of the two lines,
Therefore,
\[ \Rightarrow P{A^2} = P{B^2}\]
Now we’ll use the formula to find the length of lines if \[R\left( {{a_2},{b_2}} \right),S\left( {{a_1},{b_1}} \right)\] are the points:
\[RS = \sqrt {{{\left( {{a_1} - {a_2}} \right)}^2} + {{\left( {{b_1} - {b_2}} \right)}^2}} \]
Therefore if we apply the above formula, we get,
\[{\left( {x - 8} \right)^2} + {\left( {y - 6} \right)^2} = {\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2}\]
On further solving the above equation, we get,
\[{x^2} + {y^2} - 16x - 12y + 100 = {x^2} + {y^2} - 16x + 4y + 68\]
\[ \Rightarrow 16y = 32\]
\[ \Rightarrow y = 2\]
Same steps are to be performed for the other two points and \[PC\],
\[P{B^2} = P{C^2}\]
\[{\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2} = {\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2}\]
On solving further, we get,
\[{x^2} + {y^2} - 16x + 4y + 68 = {x^2} + {y^2} - 4x + 4y + 8\]
\[ \Rightarrow 12x = 60\]
\[ \Rightarrow x = 5\]
We have found the values of \[x\] and\[y\].
So the circumcentre, will be equal to \[\left( {5,2} \right)\]
To find the circum-radius,
\[PA = PB = PC = \sqrt {{{\left( {5 - 8} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 5\]
Note: Remember the fact that a circumcentre of a triangle is equidistant from all the vertices of the triangle which can be used to arrive at the solution.
Keeping in mind the above point, let us consider $A\left( {8,6} \right),B\left( {8, - 2} \right)$ and $C\left( {2, - 2} \right)$ as the vertices of the given triangle. If we consider a point \[P\left( {x,y} \right)\] which is equidistant from all three vertices,
Then,
$PA = PB = PC$
Now we’ll use the formula to find the length of \[PA\], \[PB\] and \[PC\] equate them, to simplify the calculations we are going to square the equations.
Therefore,
\[ \Rightarrow P{A^2} = P{B^2} = P{C^2}\]
Now let us take the first two terms and calculate the length of the two lines,
Therefore,
\[ \Rightarrow P{A^2} = P{B^2}\]
Now we’ll use the formula to find the length of lines if \[R\left( {{a_2},{b_2}} \right),S\left( {{a_1},{b_1}} \right)\] are the points:
\[RS = \sqrt {{{\left( {{a_1} - {a_2}} \right)}^2} + {{\left( {{b_1} - {b_2}} \right)}^2}} \]
Therefore if we apply the above formula, we get,
\[{\left( {x - 8} \right)^2} + {\left( {y - 6} \right)^2} = {\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2}\]
On further solving the above equation, we get,
\[{x^2} + {y^2} - 16x - 12y + 100 = {x^2} + {y^2} - 16x + 4y + 68\]
\[ \Rightarrow 16y = 32\]
\[ \Rightarrow y = 2\]
Same steps are to be performed for the other two points and \[PC\],
\[P{B^2} = P{C^2}\]
\[{\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2} = {\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2}\]
On solving further, we get,
\[{x^2} + {y^2} - 16x + 4y + 68 = {x^2} + {y^2} - 4x + 4y + 8\]
\[ \Rightarrow 12x = 60\]
\[ \Rightarrow x = 5\]
We have found the values of \[x\] and\[y\].
So the circumcentre, will be equal to \[\left( {5,2} \right)\]
To find the circum-radius,
\[PA = PB = PC = \sqrt {{{\left( {5 - 8} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 5\]
Note: Remember the fact that a circumcentre of a triangle is equidistant from all the vertices of the triangle which can be used to arrive at the solution.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

