Find the coordinates of the circumcentre of the triangle whose vertices are $\left( {8,6} \right),\left( {8, - 2} \right)$ and\[PA = PB = PC = \sqrt {{{\left( {5 - 8} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 5\]$\left( {2, - 2} \right)$. Also, find its circum-radius.
Answer
Verified
505.2k+ views
Hint: A circumcentre of a triangle is equidistant from all the vertices of the triangle.
Keeping in mind the above point, let us consider $A\left( {8,6} \right),B\left( {8, - 2} \right)$ and $C\left( {2, - 2} \right)$ as the vertices of the given triangle. If we consider a point \[P\left( {x,y} \right)\] which is equidistant from all three vertices,
Then,
$PA = PB = PC$
Now we’ll use the formula to find the length of \[PA\], \[PB\] and \[PC\] equate them, to simplify the calculations we are going to square the equations.
Therefore,
\[ \Rightarrow P{A^2} = P{B^2} = P{C^2}\]
Now let us take the first two terms and calculate the length of the two lines,
Therefore,
\[ \Rightarrow P{A^2} = P{B^2}\]
Now we’ll use the formula to find the length of lines if \[R\left( {{a_2},{b_2}} \right),S\left( {{a_1},{b_1}} \right)\] are the points:
\[RS = \sqrt {{{\left( {{a_1} - {a_2}} \right)}^2} + {{\left( {{b_1} - {b_2}} \right)}^2}} \]
Therefore if we apply the above formula, we get,
\[{\left( {x - 8} \right)^2} + {\left( {y - 6} \right)^2} = {\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2}\]
On further solving the above equation, we get,
\[{x^2} + {y^2} - 16x - 12y + 100 = {x^2} + {y^2} - 16x + 4y + 68\]
\[ \Rightarrow 16y = 32\]
\[ \Rightarrow y = 2\]
Same steps are to be performed for the other two points and \[PC\],
\[P{B^2} = P{C^2}\]
\[{\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2} = {\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2}\]
On solving further, we get,
\[{x^2} + {y^2} - 16x + 4y + 68 = {x^2} + {y^2} - 4x + 4y + 8\]
\[ \Rightarrow 12x = 60\]
\[ \Rightarrow x = 5\]
We have found the values of \[x\] and\[y\].
So the circumcentre, will be equal to \[\left( {5,2} \right)\]
To find the circum-radius,
\[PA = PB = PC = \sqrt {{{\left( {5 - 8} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 5\]
Note: Remember the fact that a circumcentre of a triangle is equidistant from all the vertices of the triangle which can be used to arrive at the solution.
Keeping in mind the above point, let us consider $A\left( {8,6} \right),B\left( {8, - 2} \right)$ and $C\left( {2, - 2} \right)$ as the vertices of the given triangle. If we consider a point \[P\left( {x,y} \right)\] which is equidistant from all three vertices,
Then,
$PA = PB = PC$
Now we’ll use the formula to find the length of \[PA\], \[PB\] and \[PC\] equate them, to simplify the calculations we are going to square the equations.
Therefore,
\[ \Rightarrow P{A^2} = P{B^2} = P{C^2}\]
Now let us take the first two terms and calculate the length of the two lines,
Therefore,
\[ \Rightarrow P{A^2} = P{B^2}\]
Now we’ll use the formula to find the length of lines if \[R\left( {{a_2},{b_2}} \right),S\left( {{a_1},{b_1}} \right)\] are the points:
\[RS = \sqrt {{{\left( {{a_1} - {a_2}} \right)}^2} + {{\left( {{b_1} - {b_2}} \right)}^2}} \]
Therefore if we apply the above formula, we get,
\[{\left( {x - 8} \right)^2} + {\left( {y - 6} \right)^2} = {\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2}\]
On further solving the above equation, we get,
\[{x^2} + {y^2} - 16x - 12y + 100 = {x^2} + {y^2} - 16x + 4y + 68\]
\[ \Rightarrow 16y = 32\]
\[ \Rightarrow y = 2\]
Same steps are to be performed for the other two points and \[PC\],
\[P{B^2} = P{C^2}\]
\[{\left( {x - 8} \right)^2} + {\left( {y + 2} \right)^2} = {\left( {x - 2} \right)^2} + {\left( {y + 2} \right)^2}\]
On solving further, we get,
\[{x^2} + {y^2} - 16x + 4y + 68 = {x^2} + {y^2} - 4x + 4y + 8\]
\[ \Rightarrow 12x = 60\]
\[ \Rightarrow x = 5\]
We have found the values of \[x\] and\[y\].
So the circumcentre, will be equal to \[\left( {5,2} \right)\]
To find the circum-radius,
\[PA = PB = PC = \sqrt {{{\left( {5 - 8} \right)}^2} + {{\left( {2 - 6} \right)}^2}} = 5\]
Note: Remember the fact that a circumcentre of a triangle is equidistant from all the vertices of the triangle which can be used to arrive at the solution.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE