Answer
Verified
380.4k+ views
Hint: Here in this question, we have to find the coordinate \[P\left( {x,y} \right)\] which is equidistant from the given 3 point \[A\], \[B\] and C i.e., \[PA = PB = PC\]. First, we will find the distance between the given points and unknown point \[P\] by using the distance formula and further simplify by the elimination method of the system of linear equations to get the required coordinate \[P\left( {x,y} \right)\].
Complete step by step answer:
The distance between two points is the length of the interval joining the two points. If the two points lie on the same horizontal or same vertical line. In general, the distance can be found by subtracting the coordinates that are not the same. The distance between two points of the \[xy\] -plane can be found using the distance formula. An ordered pair \[\left( {x,{\text{ }}y} \right)\] represents co-ordinate of the point, where x-coordinate (or abscissa) is the distance of the point from the centre and y-coordinate (or ordinate) is the distance of the point from the centre.
Formula to find Distance Between Two Points in 2d plane. Consider two points, \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] on the given coordinate axis.
The distance between these points is given as: \[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] ----(1)
Now consider, the given points \[A\left( {1,2} \right)\], \[B\left( {3, - 4} \right)\] and \[C\left( {5, - 6} \right)\] are equidistant from the \[P\left( {x,y} \right)\], the we have to find the value of coordinate \[P\left( {x,y} \right)\].
Given, there points \[A\],\[B\]and \[C\] are equidistant from\[P\], so
\[PA = PB = PC\] ----(2)
Consider,
\[ \Rightarrow \,\,\,PA = PB\]
On applying the distance formula, we have
\[ \Rightarrow \,\,\,\sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {2 - y} \right)}^2}} = \sqrt {{{\left( {3 - x} \right)}^2} + {{\left( { - 4 - y} \right)}^2}} \]
Taking square on both side, then
\[ \Rightarrow \,\,\,{\left( {1 - x} \right)^2} + {\left( {2 - y} \right)^2} = {\left( {3 - x} \right)^2} + {\left( { - 4 - y} \right)^2}\]
We know the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow \,\,\,{1^2} + {x^2} - 2\left( 1 \right)\left( x \right) + {2^2} + {y^2} - 2\left( 2 \right)\left( y \right) = {3^2} + {x^2} - 2\left( 3 \right)\left( x \right) + {\left( { - 4} \right)^2} + {y^2} - 2\left( { - 4} \right)\left( y \right)\]
\[ \Rightarrow \,\,\,1 + {x^2} - 2x + 4 + {y^2} - 4y = 9 + {x^2} - 6x + 16 + {y^2} + 8y\]
\[ \Rightarrow \,\,\,{x^2} + {y^2} - 2x - 4y + 5 = {x^2} + {y^2} - 6x + 8y + 25\]
Take all the RHS term to LHS, then
\[ \Rightarrow \,\,\,{x^2} + {y^2} - 2x - 4y + 5 - {x^2} - {y^2} + 6x - 8y - 25 = 0\]
On simplification we get
\[ \Rightarrow \,\,\,4x - 12y - 20 = 0\]
Divide whole equation by 4, then we get
\[ \Rightarrow \,\,\,x - 3y - 5 = 0\] -------(3)
Now, consider
\[ \Rightarrow \,\,\,PA = PC\]
On applying the distance formula, we have
\[ \Rightarrow \,\,\,\sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {2 - y} \right)}^2}} = \sqrt {{{\left( {5 - x} \right)}^2} + {{\left( { - 6 - y} \right)}^2}} \]
Taking square on both side, then
\[ \Rightarrow \,\,\,{\left( {1 - x} \right)^2} + {\left( {2 - y} \right)^2} = {\left( {5 - x} \right)^2} + {\left( { - 6 - y} \right)^2}\]
We know the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow \,\,\,{1^2} + {x^2} - 2\left( 1 \right)\left( x \right) + {2^2} + {y^2} - 2\left( 2 \right)\left( y \right) = {5^2} + {x^2} - 2\left( 5 \right)\left( x \right) + {\left( { - 6} \right)^2} + {y^2} - 2\left( { - 6} \right)\left( y \right)\]
\[ \Rightarrow \,\,\,1 + {x^2} - 2x + 4 + {y^2} - 4y = 25 + {x^2} - 10x + 36 + {y^2} + 12y\]
\[ \Rightarrow \,\,\,{x^2} + {y^2} - 2x - 4y + 5 = {x^2} + {y^2} - 10x + 12y + 61\]
Take all the RHS term to LHS, then
\[ \Rightarrow \,\,\,{x^2} + {y^2} - 2x - 4y + 5 - {x^2} - {y^2} + 10x - 12y - 61 = 0\]
On simplification we get
\[ \Rightarrow \,\,\,8x - 16y - 56 = 0\]
Divide whole equation by 8, then we get
\[ \Rightarrow \,\,\,x - 2y - 7 = 0\] -------(4)
Solve equation (3) and (4) to get the value of \[x\] and \[y\] of coordinate \[P\left( {x,y} \right)\]
\[x - 3y - 5 = 0\]
\[\Rightarrow x - 2y - 7 = 0\]
Since the coefficients of \[x\] and \[y\] are the same, we change the sign by the alternate sign.
\[\underline {
+ x - \,\,\,3y - 5 = 0 \\
\mathop + \limits_{( - )} x\mathop - \limits_{( + )} 2y\mathop - \limits_{( + )} 7 = 0 }\\
\]
Now we cancel the \[x\] term and simplify other terms, so we have
\[
\underline {
+ x - \,\,\,3y - 5 = 0 \\
\mathop + \limits_{( - )} x\mathop - \limits_{( + )} 2y\mathop - \limits_{( + )} 7 = 0 \\
} \\
- y + 2 = 0 \\
\]
\[ \Rightarrow \,\, - y + 2 = 0\]
Subtract 2 on both side, then
\[ \Rightarrow \,\, - y = - 2\]
Cancel \['\, - '\] sign on both side, then we get
\[\therefore \,\,y = 2\]
We have found the value of \[y\], now we can find the value of \[x\] by substituting the value \[y\]to any one of the equations (3) or (4) . we will substitute the value of \[y\]to equation (3).
Therefore, we have \[x - 3y - 5 = 0\]
\[ \Rightarrow x - 3\left( 2 \right) - 5 = 0\]
\[ \Rightarrow x - 6 - 5 = 0\]
\[ \Rightarrow x - 11 = 0\]
Add 6 on both side, then we get
\[\therefore \,\,x = 11\]
Hence, the required coordinate or point \[P\left( {x,y} \right) = \left( {11,2} \right)\].
Note: The distance is a length between the two points. In geometry we have a formula to determine the distance between the points. While determining the distance between the points we consider the both values of $x$ and the value of $y$. Where $x$ and $y$ are the coordinates and in the elimination method to eliminate the term we must be aware of the sign where we change the sign by the alternate sign and we have made the one variable term have the same coefficient such that it will be easy to solve the equation.
Complete step by step answer:
The distance between two points is the length of the interval joining the two points. If the two points lie on the same horizontal or same vertical line. In general, the distance can be found by subtracting the coordinates that are not the same. The distance between two points of the \[xy\] -plane can be found using the distance formula. An ordered pair \[\left( {x,{\text{ }}y} \right)\] represents co-ordinate of the point, where x-coordinate (or abscissa) is the distance of the point from the centre and y-coordinate (or ordinate) is the distance of the point from the centre.
Formula to find Distance Between Two Points in 2d plane. Consider two points, \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\] on the given coordinate axis.
The distance between these points is given as: \[d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] ----(1)
Now consider, the given points \[A\left( {1,2} \right)\], \[B\left( {3, - 4} \right)\] and \[C\left( {5, - 6} \right)\] are equidistant from the \[P\left( {x,y} \right)\], the we have to find the value of coordinate \[P\left( {x,y} \right)\].
Given, there points \[A\],\[B\]and \[C\] are equidistant from\[P\], so
\[PA = PB = PC\] ----(2)
Consider,
\[ \Rightarrow \,\,\,PA = PB\]
On applying the distance formula, we have
\[ \Rightarrow \,\,\,\sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {2 - y} \right)}^2}} = \sqrt {{{\left( {3 - x} \right)}^2} + {{\left( { - 4 - y} \right)}^2}} \]
Taking square on both side, then
\[ \Rightarrow \,\,\,{\left( {1 - x} \right)^2} + {\left( {2 - y} \right)^2} = {\left( {3 - x} \right)^2} + {\left( { - 4 - y} \right)^2}\]
We know the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow \,\,\,{1^2} + {x^2} - 2\left( 1 \right)\left( x \right) + {2^2} + {y^2} - 2\left( 2 \right)\left( y \right) = {3^2} + {x^2} - 2\left( 3 \right)\left( x \right) + {\left( { - 4} \right)^2} + {y^2} - 2\left( { - 4} \right)\left( y \right)\]
\[ \Rightarrow \,\,\,1 + {x^2} - 2x + 4 + {y^2} - 4y = 9 + {x^2} - 6x + 16 + {y^2} + 8y\]
\[ \Rightarrow \,\,\,{x^2} + {y^2} - 2x - 4y + 5 = {x^2} + {y^2} - 6x + 8y + 25\]
Take all the RHS term to LHS, then
\[ \Rightarrow \,\,\,{x^2} + {y^2} - 2x - 4y + 5 - {x^2} - {y^2} + 6x - 8y - 25 = 0\]
On simplification we get
\[ \Rightarrow \,\,\,4x - 12y - 20 = 0\]
Divide whole equation by 4, then we get
\[ \Rightarrow \,\,\,x - 3y - 5 = 0\] -------(3)
Now, consider
\[ \Rightarrow \,\,\,PA = PC\]
On applying the distance formula, we have
\[ \Rightarrow \,\,\,\sqrt {{{\left( {1 - x} \right)}^2} + {{\left( {2 - y} \right)}^2}} = \sqrt {{{\left( {5 - x} \right)}^2} + {{\left( { - 6 - y} \right)}^2}} \]
Taking square on both side, then
\[ \Rightarrow \,\,\,{\left( {1 - x} \right)^2} + {\left( {2 - y} \right)^2} = {\left( {5 - x} \right)^2} + {\left( { - 6 - y} \right)^2}\]
We know the algebraic identity \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], then
\[ \Rightarrow \,\,\,{1^2} + {x^2} - 2\left( 1 \right)\left( x \right) + {2^2} + {y^2} - 2\left( 2 \right)\left( y \right) = {5^2} + {x^2} - 2\left( 5 \right)\left( x \right) + {\left( { - 6} \right)^2} + {y^2} - 2\left( { - 6} \right)\left( y \right)\]
\[ \Rightarrow \,\,\,1 + {x^2} - 2x + 4 + {y^2} - 4y = 25 + {x^2} - 10x + 36 + {y^2} + 12y\]
\[ \Rightarrow \,\,\,{x^2} + {y^2} - 2x - 4y + 5 = {x^2} + {y^2} - 10x + 12y + 61\]
Take all the RHS term to LHS, then
\[ \Rightarrow \,\,\,{x^2} + {y^2} - 2x - 4y + 5 - {x^2} - {y^2} + 10x - 12y - 61 = 0\]
On simplification we get
\[ \Rightarrow \,\,\,8x - 16y - 56 = 0\]
Divide whole equation by 8, then we get
\[ \Rightarrow \,\,\,x - 2y - 7 = 0\] -------(4)
Solve equation (3) and (4) to get the value of \[x\] and \[y\] of coordinate \[P\left( {x,y} \right)\]
\[x - 3y - 5 = 0\]
\[\Rightarrow x - 2y - 7 = 0\]
Since the coefficients of \[x\] and \[y\] are the same, we change the sign by the alternate sign.
\[\underline {
+ x - \,\,\,3y - 5 = 0 \\
\mathop + \limits_{( - )} x\mathop - \limits_{( + )} 2y\mathop - \limits_{( + )} 7 = 0 }\\
\]
Now we cancel the \[x\] term and simplify other terms, so we have
\[
\underline {
+ x - \,\,\,3y - 5 = 0 \\
\mathop + \limits_{( - )} x\mathop - \limits_{( + )} 2y\mathop - \limits_{( + )} 7 = 0 \\
} \\
- y + 2 = 0 \\
\]
\[ \Rightarrow \,\, - y + 2 = 0\]
Subtract 2 on both side, then
\[ \Rightarrow \,\, - y = - 2\]
Cancel \['\, - '\] sign on both side, then we get
\[\therefore \,\,y = 2\]
We have found the value of \[y\], now we can find the value of \[x\] by substituting the value \[y\]to any one of the equations (3) or (4) . we will substitute the value of \[y\]to equation (3).
Therefore, we have \[x - 3y - 5 = 0\]
\[ \Rightarrow x - 3\left( 2 \right) - 5 = 0\]
\[ \Rightarrow x - 6 - 5 = 0\]
\[ \Rightarrow x - 11 = 0\]
Add 6 on both side, then we get
\[\therefore \,\,x = 11\]
Hence, the required coordinate or point \[P\left( {x,y} \right) = \left( {11,2} \right)\].
Note: The distance is a length between the two points. In geometry we have a formula to determine the distance between the points. While determining the distance between the points we consider the both values of $x$ and the value of $y$. Where $x$ and $y$ are the coordinates and in the elimination method to eliminate the term we must be aware of the sign where we change the sign by the alternate sign and we have made the one variable term have the same coefficient such that it will be easy to solve the equation.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE