Answer
Verified
453.3k+ views
Hint: In order to solve this problem, we need to understand the meaning of trisecting the line. Trisecting is dividing the line into three equal parts. We need to use the section formula to solve this. The section formula says that if the line has endpoints $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ and divides in the ratio m:n starting from point A, then the point C is given by $C\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$.
Complete step-by-step solution:
We have given two points and we need to find the coordinates that trisect the line joining the points (-3,0) and (6,6).
Let’s understand what do we mean by trisection.
We need to divide the line joining AB into three equal parts.
This can be done by considering the ratio 2:1 for the first point and then by the ratio 1:2.
We can understand with the help of a diagram better.
From this diagram, we can see that to get point Q we need to divide the line in the ratio ${{m}_{1}}:{{n}_{1}}$ and to get the point P we need to divide the point in the ratio ${{m}_{2}}:{{n}_{2}}$.
As all the parts are of the same length, we can write that ${{m}_{1}}:{{n}_{1}}=2:1$ and ${{m}_{2}}:{{n}_{2}}=1:2$ .
We need to divide the length with the help of the section formula.
The section formula says that if the line has endpoints $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ and divides in the ratio m:n starting from point A, then the point C is given by $C\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$
So, using this formula lets first calculate the coordinates of point P
For point P, $A\left( {{x}_{1}},{{y}_{1}} \right)=A\left( -3,0 \right),B\left( {{x}_{2}},{{y}_{2}} \right)=B\left( 6,6 \right)$ and the ratio is 2:1
Using the formula, we get,
$P\left( \dfrac{2\times 6+1\times -3}{2+1},\dfrac{2\times 6+1\times 0}{2+1} \right)$
Solving this we get,
$\begin{align}
& P\left( \dfrac{12-3}{3},\dfrac{12}{3} \right) \\
& P\left( 3,4 \right) \\
\end{align}$
We know the first coordinate. Let find the second coordinate that is Q.
For point Q, $A\left( {{x}_{1}},{{y}_{1}} \right)=A\left( -3,0 \right),B\left( {{x}_{2}},{{y}_{2}} \right)=B\left( 6,6 \right)$ and the ratio is 1:2
Using the formula, we get,
$Q\left( \dfrac{1\times 6+2\times -3}{1+2},\dfrac{1\times 6+2\times 0}{1+2} \right)$
Solving this we get,
$\begin{align}
& Q\left( \dfrac{6-6}{3},\dfrac{6}{3} \right) \\
& Q\left( 0,2 \right) \\
\end{align}$
Therefore, the two points are P (3,4) and Q (0,2).
Note: In this problem, it is very important from where we start ratio m:n, because as the point is not symmetric the equation may change and the P and Q might interchange. Further, to cross-check can always plot all the points again and check the answer.
Complete step-by-step solution:
We have given two points and we need to find the coordinates that trisect the line joining the points (-3,0) and (6,6).
Let’s understand what do we mean by trisection.
We need to divide the line joining AB into three equal parts.
This can be done by considering the ratio 2:1 for the first point and then by the ratio 1:2.
We can understand with the help of a diagram better.
From this diagram, we can see that to get point Q we need to divide the line in the ratio ${{m}_{1}}:{{n}_{1}}$ and to get the point P we need to divide the point in the ratio ${{m}_{2}}:{{n}_{2}}$.
As all the parts are of the same length, we can write that ${{m}_{1}}:{{n}_{1}}=2:1$ and ${{m}_{2}}:{{n}_{2}}=1:2$ .
We need to divide the length with the help of the section formula.
The section formula says that if the line has endpoints $A\left( {{x}_{1}},{{y}_{1}} \right)$ and $B\left( {{x}_{2}},{{y}_{2}} \right)$ and divides in the ratio m:n starting from point A, then the point C is given by $C\left( \dfrac{m{{x}_{2}}+n{{x}_{1}}}{m+n},\dfrac{m{{y}_{2}}+n{{y}_{1}}}{m+n} \right)$
So, using this formula lets first calculate the coordinates of point P
For point P, $A\left( {{x}_{1}},{{y}_{1}} \right)=A\left( -3,0 \right),B\left( {{x}_{2}},{{y}_{2}} \right)=B\left( 6,6 \right)$ and the ratio is 2:1
Using the formula, we get,
$P\left( \dfrac{2\times 6+1\times -3}{2+1},\dfrac{2\times 6+1\times 0}{2+1} \right)$
Solving this we get,
$\begin{align}
& P\left( \dfrac{12-3}{3},\dfrac{12}{3} \right) \\
& P\left( 3,4 \right) \\
\end{align}$
We know the first coordinate. Let find the second coordinate that is Q.
For point Q, $A\left( {{x}_{1}},{{y}_{1}} \right)=A\left( -3,0 \right),B\left( {{x}_{2}},{{y}_{2}} \right)=B\left( 6,6 \right)$ and the ratio is 1:2
Using the formula, we get,
$Q\left( \dfrac{1\times 6+2\times -3}{1+2},\dfrac{1\times 6+2\times 0}{1+2} \right)$
Solving this we get,
$\begin{align}
& Q\left( \dfrac{6-6}{3},\dfrac{6}{3} \right) \\
& Q\left( 0,2 \right) \\
\end{align}$
Therefore, the two points are P (3,4) and Q (0,2).
Note: In this problem, it is very important from where we start ratio m:n, because as the point is not symmetric the equation may change and the P and Q might interchange. Further, to cross-check can always plot all the points again and check the answer.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE