Answer
Verified
469.5k+ views
Hint: First, we will understand the definition of prime factorization which is given as prime numbers when multiplied together make the original number. Then we will find factors of the number 110592 and we will group it into pairs of 3 as we have to find the cube root of the number. For example, if we want to find the cube root of 27 then we can write it as $ \underline{3\times 3\times 3} $ and so the answer is number 3. Similarly, by doing this we will find the answer.
Complete step-by-step answer:
Here, we will first understand the prime factorization method.
Prime Factorization is a method of finding which. prime numbers when multiplied together make the original number. For example: let us take number 12. So, the prime number which when multiplied give number 12 is $ 2\times 2\times 3 $.
Similarly, we will first find prime factors of number 110592. So, we will divide this number using a prime number only. We will get as
$ \begin{align}
& 2\left| \!{\underline {\,
110592 \,}} \right. \\
& 2\left| \!{\underline {\,
55296 \,}} \right. \\
& 2\left| \!{\underline {\,
27648 \,}} \right. \\
& 2\left| \!{\underline {\,
13824 \,}} \right. \\
& 2\left| \!{\underline {\,
6912 \,}} \right. \\
& 2\left| \!{\underline {\,
3456 \,}} \right. \\
& 2\left| \!{\underline {\,
1728 \,}} \right. \\
& 2\left| \!{\underline {\,
864 \,}} \right. \\
& 2\left| \!{\underline {\,
432 \,}} \right. \\
& 2\left| \!{\underline {\,
216 \,}} \right. \\
& 2\left| \!{\underline {\,
108 \,}} \right. \\
& 2\left| \!{\underline {\,
54 \,}} \right. \\
& 3\left| \!{\underline {\,
27 \,}} \right. \\
& 3\left| \!{\underline {\,
9 \,}} \right. \\
& 3\left| \!{\underline {\,
3 \,}} \right. \\
\end{align} $
We get as $ 110592=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 3\times 3\times 3 $
Now, we have to find the cube root of the number. So, we will pair the same digit in a group of three. So, we get as $ 110592=\underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline{3\times 3\times 3} $
Thus, we will multiply a single digit from all the five pairs i.e. $ 2\times 2\times 2\times 2\times 3=48 $ .
Thus, the cube root of 110592 is 48.
So, the correct answer is “Option A”.
Note: Another method of solving is by option method. If we take option (b) i.e. 38 and we multiply it 3 times, then we should get an answer equal to 110592. So, by this also we can directly find out which number on the cube gives the number in question. Be careful in the prime factorization method. Only take prime numbers and then solve so not take any other numbers like 4,6,8… so on which are not prime and get the answer. It will be the wrong method.
Complete step-by-step answer:
Here, we will first understand the prime factorization method.
Prime Factorization is a method of finding which. prime numbers when multiplied together make the original number. For example: let us take number 12. So, the prime number which when multiplied give number 12 is $ 2\times 2\times 3 $.
Similarly, we will first find prime factors of number 110592. So, we will divide this number using a prime number only. We will get as
$ \begin{align}
& 2\left| \!{\underline {\,
110592 \,}} \right. \\
& 2\left| \!{\underline {\,
55296 \,}} \right. \\
& 2\left| \!{\underline {\,
27648 \,}} \right. \\
& 2\left| \!{\underline {\,
13824 \,}} \right. \\
& 2\left| \!{\underline {\,
6912 \,}} \right. \\
& 2\left| \!{\underline {\,
3456 \,}} \right. \\
& 2\left| \!{\underline {\,
1728 \,}} \right. \\
& 2\left| \!{\underline {\,
864 \,}} \right. \\
& 2\left| \!{\underline {\,
432 \,}} \right. \\
& 2\left| \!{\underline {\,
216 \,}} \right. \\
& 2\left| \!{\underline {\,
108 \,}} \right. \\
& 2\left| \!{\underline {\,
54 \,}} \right. \\
& 3\left| \!{\underline {\,
27 \,}} \right. \\
& 3\left| \!{\underline {\,
9 \,}} \right. \\
& 3\left| \!{\underline {\,
3 \,}} \right. \\
\end{align} $
We get as $ 110592=2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\times 3\times 3\times 3 $
Now, we have to find the cube root of the number. So, we will pair the same digit in a group of three. So, we get as $ 110592=\underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline{2\times 2\times 2}\times \underline{3\times 3\times 3} $
Thus, we will multiply a single digit from all the five pairs i.e. $ 2\times 2\times 2\times 2\times 3=48 $ .
Thus, the cube root of 110592 is 48.
So, the correct answer is “Option A”.
Note: Another method of solving is by option method. If we take option (b) i.e. 38 and we multiply it 3 times, then we should get an answer equal to 110592. So, by this also we can directly find out which number on the cube gives the number in question. Be careful in the prime factorization method. Only take prime numbers and then solve so not take any other numbers like 4,6,8… so on which are not prime and get the answer. It will be the wrong method.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers