
Find the degree of differential equation of all curves having normal of constant length c-
A) $1$
B) $3$
C) $4$
D) $2$
Answer
493.8k+ views
Hint: We can find the degree of differential equation by using the formula-
Length of normal=$y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ where y is the given function and $\dfrac{{dy}}{{dx}}$ is the derivative of the function.
Complete step-by-step answer:
The degree is the power of the highest derivative .Here, we have to find the degree of differential equation of all curves having a normal of constant length c. We know that the if y=f(x) is any given function of a curve then at point $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ the length of normal is given as-
$ \Rightarrow $ Length of normal=$y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ where y is the given function and $\dfrac{{dy}}{{dx}}$ is the derivative of the function
So on putting the value of normal length, we get-
$ \Rightarrow {\text{c = }}y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ --- (i)
We have to find degree of this differential equation so first we will square both side to remove the square-root,
$ \Rightarrow {{\text{c}}^2} = {{\text{y}}^2}{\left( {1 + \dfrac{{dy}}{{dx}}} \right)^2}$
On simplifying and multiplying the function ${{\text{y}}^2}$ inside the bracket, we get-
$
\Rightarrow {{\text{c}}^2} = {{\text{y}}^2}\left( {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2} + 2\dfrac{{dy}}{{dx}}} \right) \\
\Rightarrow {{\text{c}}^2} = {{\text{y}}^2} + {{\text{y}}^2}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} + 2{{\text{y}}^2}\dfrac{{dy}}{{dx}} \\
$
Here the highest derivative is ${\left( {\dfrac{{dy}}{{dx}}} \right)^2}$ and its power is $2$ so the degree of the differential equation is also $2$
Hence the answer is ‘D’.
Note: Here the student may go wrong if they try to find the degree of differential equation in eq. (i) as the derivative is also under the square-root. So first we have to solve the eq. (i) and remove the square-root, only then can we easily find the degree.
Length of normal=$y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ where y is the given function and $\dfrac{{dy}}{{dx}}$ is the derivative of the function.
Complete step-by-step answer:
The degree is the power of the highest derivative .Here, we have to find the degree of differential equation of all curves having a normal of constant length c. We know that the if y=f(x) is any given function of a curve then at point $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ the length of normal is given as-
$ \Rightarrow $ Length of normal=$y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ where y is the given function and $\dfrac{{dy}}{{dx}}$ is the derivative of the function
So on putting the value of normal length, we get-
$ \Rightarrow {\text{c = }}y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ --- (i)
We have to find degree of this differential equation so first we will square both side to remove the square-root,
$ \Rightarrow {{\text{c}}^2} = {{\text{y}}^2}{\left( {1 + \dfrac{{dy}}{{dx}}} \right)^2}$
On simplifying and multiplying the function ${{\text{y}}^2}$ inside the bracket, we get-
$
\Rightarrow {{\text{c}}^2} = {{\text{y}}^2}\left( {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2} + 2\dfrac{{dy}}{{dx}}} \right) \\
\Rightarrow {{\text{c}}^2} = {{\text{y}}^2} + {{\text{y}}^2}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} + 2{{\text{y}}^2}\dfrac{{dy}}{{dx}} \\
$
Here the highest derivative is ${\left( {\dfrac{{dy}}{{dx}}} \right)^2}$ and its power is $2$ so the degree of the differential equation is also $2$
Hence the answer is ‘D’.
Note: Here the student may go wrong if they try to find the degree of differential equation in eq. (i) as the derivative is also under the square-root. So first we have to solve the eq. (i) and remove the square-root, only then can we easily find the degree.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
