Answer
Verified
469.5k+ views
Hint: We can find the degree of differential equation by using the formula-
Length of normal=$y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ where y is the given function and $\dfrac{{dy}}{{dx}}$ is the derivative of the function.
Complete step-by-step answer:
The degree is the power of the highest derivative .Here, we have to find the degree of differential equation of all curves having a normal of constant length c. We know that the if y=f(x) is any given function of a curve then at point $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ the length of normal is given as-
$ \Rightarrow $ Length of normal=$y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ where y is the given function and $\dfrac{{dy}}{{dx}}$ is the derivative of the function
So on putting the value of normal length, we get-
$ \Rightarrow {\text{c = }}y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ --- (i)
We have to find degree of this differential equation so first we will square both side to remove the square-root,
$ \Rightarrow {{\text{c}}^2} = {{\text{y}}^2}{\left( {1 + \dfrac{{dy}}{{dx}}} \right)^2}$
On simplifying and multiplying the function ${{\text{y}}^2}$ inside the bracket, we get-
$
\Rightarrow {{\text{c}}^2} = {{\text{y}}^2}\left( {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2} + 2\dfrac{{dy}}{{dx}}} \right) \\
\Rightarrow {{\text{c}}^2} = {{\text{y}}^2} + {{\text{y}}^2}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} + 2{{\text{y}}^2}\dfrac{{dy}}{{dx}} \\
$
Here the highest derivative is ${\left( {\dfrac{{dy}}{{dx}}} \right)^2}$ and its power is $2$ so the degree of the differential equation is also $2$
Hence the answer is ‘D’.
Note: Here the student may go wrong if they try to find the degree of differential equation in eq. (i) as the derivative is also under the square-root. So first we have to solve the eq. (i) and remove the square-root, only then can we easily find the degree.
Length of normal=$y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ where y is the given function and $\dfrac{{dy}}{{dx}}$ is the derivative of the function.
Complete step-by-step answer:
The degree is the power of the highest derivative .Here, we have to find the degree of differential equation of all curves having a normal of constant length c. We know that the if y=f(x) is any given function of a curve then at point $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ the length of normal is given as-
$ \Rightarrow $ Length of normal=$y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ where y is the given function and $\dfrac{{dy}}{{dx}}$ is the derivative of the function
So on putting the value of normal length, we get-
$ \Rightarrow {\text{c = }}y\sqrt {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2}} $ --- (i)
We have to find degree of this differential equation so first we will square both side to remove the square-root,
$ \Rightarrow {{\text{c}}^2} = {{\text{y}}^2}{\left( {1 + \dfrac{{dy}}{{dx}}} \right)^2}$
On simplifying and multiplying the function ${{\text{y}}^2}$ inside the bracket, we get-
$
\Rightarrow {{\text{c}}^2} = {{\text{y}}^2}\left( {1 + {{\left( {\dfrac{{dy}}{{dx}}} \right)}^2} + 2\dfrac{{dy}}{{dx}}} \right) \\
\Rightarrow {{\text{c}}^2} = {{\text{y}}^2} + {{\text{y}}^2}{\left( {\dfrac{{dy}}{{dx}}} \right)^2} + 2{{\text{y}}^2}\dfrac{{dy}}{{dx}} \\
$
Here the highest derivative is ${\left( {\dfrac{{dy}}{{dx}}} \right)^2}$ and its power is $2$ so the degree of the differential equation is also $2$
Hence the answer is ‘D’.
Note: Here the student may go wrong if they try to find the degree of differential equation in eq. (i) as the derivative is also under the square-root. So first we have to solve the eq. (i) and remove the square-root, only then can we easily find the degree.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers