Answer
Verified
498k+ views
Hint: Find the volume of the rectangular tank using the given values in the question. Now, equate that volume to the volume of the cylinder which is given as \[\pi {{r}^{2}}h\], where ‘r’ is the radius of the circular base and ‘h’ is the height of the cylinder.
A cylinder is a three dimensional figure in geometry. The top face and the bottom face of a cylinder have the shape of the circle. The top and bottom faces are flat and also equal in size, these two faces are connected by a curved face that generally looks like a tube. The shape of a candle is a good example for the cylinder.
Now, let us determine the volume of a cylindrical tank, we shall take a cylindrical tank of radius ‘r’ and height ’h’ as mentioned below in the diagram.
The area of the top or bottom surfaces is given as \[\pi {{r}^{2}}\], as they are in the shape of the circle.
Now, the volume is given as:
Volume=Area x height.
Volume =\[\pi {{r}^{2}}\times h\]
Therefore, volume=\[\pi {{r}^{2}}\times h\].
So, the volume of a cylindrical tank whose radius is ’r’ and height ’h’ is given as \[\pi {{r}^{2}}h\].
Now, let us compute the volume of the rectangular tank mentioned in the question whose size is \[28m\times 16m\times 11m\].
Volume of rectangle= length x breadth x height.
So, the volume =28x16x11
Volume=\[4928{{m}^{3}}\].
As the cylindrical tank also has the same volume, we have:
\[\pi {{r}^{2}}h=4928{{m}^{3}}\]
Where it is given that, \[r=28m\]and we know \[\pi =\dfrac{22}{7}\], substituting this in above equation, we get
\[\left( \dfrac{22}{7} \right){{\left( 28 \right)}^{2}}h=4928\]
\[h=\dfrac{4928\times 7}{22\times 28\times 28}\]
\[h=2m\].
Therefore, the height or depth of the required cylindrical tank is \[h=2m\]
Note: You can also use the formula of \[\dfrac{\pi {{d}^{2}}h}{4}\] for computing the volume of the cylinder, when the value of diameter is known. While substituting the values in the volume formula, we have to make sure that all the lengths are taken with respect to the same units.
A cylinder is a three dimensional figure in geometry. The top face and the bottom face of a cylinder have the shape of the circle. The top and bottom faces are flat and also equal in size, these two faces are connected by a curved face that generally looks like a tube. The shape of a candle is a good example for the cylinder.
Now, let us determine the volume of a cylindrical tank, we shall take a cylindrical tank of radius ‘r’ and height ’h’ as mentioned below in the diagram.
The area of the top or bottom surfaces is given as \[\pi {{r}^{2}}\], as they are in the shape of the circle.
Now, the volume is given as:
Volume=Area x height.
Volume =\[\pi {{r}^{2}}\times h\]
Therefore, volume=\[\pi {{r}^{2}}\times h\].
So, the volume of a cylindrical tank whose radius is ’r’ and height ’h’ is given as \[\pi {{r}^{2}}h\].
Now, let us compute the volume of the rectangular tank mentioned in the question whose size is \[28m\times 16m\times 11m\].
Volume of rectangle= length x breadth x height.
So, the volume =28x16x11
Volume=\[4928{{m}^{3}}\].
As the cylindrical tank also has the same volume, we have:
\[\pi {{r}^{2}}h=4928{{m}^{3}}\]
Where it is given that, \[r=28m\]and we know \[\pi =\dfrac{22}{7}\], substituting this in above equation, we get
\[\left( \dfrac{22}{7} \right){{\left( 28 \right)}^{2}}h=4928\]
\[h=\dfrac{4928\times 7}{22\times 28\times 28}\]
\[h=2m\].
Therefore, the height or depth of the required cylindrical tank is \[h=2m\]
Note: You can also use the formula of \[\dfrac{\pi {{d}^{2}}h}{4}\] for computing the volume of the cylinder, when the value of diameter is known. While substituting the values in the volume formula, we have to make sure that all the lengths are taken with respect to the same units.
Recently Updated Pages
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
What is the distance between the circumcentre and the class 10 maths JEE_Main
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
A Paragraph on Pollution in about 100-150 Words
Name the scientist who invented the electric cell and class 10 physics CBSE
Is curdling of milk a physical change or chemical class 10 chemistry CBSE
Discuss the main reasons for poverty in India