
Find the derivative of $ {{\cos }^{2}}x $ by using the first principle of derivatives.
Answer
426.1k+ views
Hint: The first principle of derivatives: Given a function $ y=f\left( x \right) $ , its first derivative, the rate of change of y with respect to the change in x, is defined by: $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $ .
Finding the derivative of a function by computing this limit is known as differentiation from first principles.
Use the identity $ \sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B={{\cos }^{2}}B-{{\cos }^{2}}A $ .
We know that $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ .
Complete step by step answer:
Let's say that the given function is $ y=f(x)={{\cos }^{2}}x $ .
For a change from $ x $ to $ x+h $ , the value of y changes from $ f(x) $ to $ f(x+h) $ .
The rate of change of y with respect to the change in x, will be given by:
$ \dfrac{\text{Change in the value of y}}{\text{Change in the value of x}}=\dfrac{f(x+h)-f(x)}{(x+h)-(x)} $
This rate for very small values of the change in x, is called the derivative of the function and is represented by $ \dfrac{dy}{dx} $ .
∴ $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
⇒ $ \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{{{\cos }^{2}}\left( x+h \right)-{{\cos }^{2}}\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
Using the identity $ {{\cos }^{2}}B-{{\cos }^{2}}A=\sin (A+B)\sin (A-B) $ , we get:
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ \left( x+h \right)+\left( x \right) \right]\sin \left[ \left( x+h \right)-\left( x \right) \right]}{h} \right] $
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( 2x+h \right)\sin \left( h \right)}{h} \right] $
Which can be written as:
= $ \underset{h\to 0}{\mathop{\lim }}\,\sin \left( 2x+h \right)\times \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h} $
Applying the limit and using $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ , we get:
= $ \sin \left( 2x+0 \right)\times 1 $
= $ \sin 2x $
Therefore, the derivative of $ {{\cos }^{2}}x $ is $ \sin 2x $ .
Note: Differentiability of a Function: A function $ f(x) $ is differentiable at $ x=a $ in its domain, if its derivative is continuous at $ a $ .
This means that $ {f}'(a) $ must exist, or equivalently: $ \underset{x\to {{a}^{+}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to a}{\mathop{\lim }}\,{f}'(x)={f}'(a) $ .
A continuous function is always differentiable but a differentiable function needs not be continuous.
Indeterminate Forms: Any expression whose value cannot be defined, like $ \dfrac{0}{0},\pm \dfrac{\infty }{\infty },{{0}^{0}},{{\infty }^{0}} $ etc.
L'Hospital's Rule: For the differentiable functions f(x) and g(x), the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)} $ , if $ f(x) $ and $ g(x) $ are both 0 or $ \pm \infty $ (i.e. an Indeterminate Form) is equal to the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{{f}'(x)}{{g}'(x)} $ , if it exists.
Finding the derivative of a function by computing this limit is known as differentiation from first principles.
Use the identity $ \sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B={{\cos }^{2}}B-{{\cos }^{2}}A $ .
We know that $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ .
Complete step by step answer:
Let's say that the given function is $ y=f(x)={{\cos }^{2}}x $ .
For a change from $ x $ to $ x+h $ , the value of y changes from $ f(x) $ to $ f(x+h) $ .
The rate of change of y with respect to the change in x, will be given by:
$ \dfrac{\text{Change in the value of y}}{\text{Change in the value of x}}=\dfrac{f(x+h)-f(x)}{(x+h)-(x)} $
This rate for very small values of the change in x, is called the derivative of the function and is represented by $ \dfrac{dy}{dx} $ .
∴ $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
⇒ $ \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{{{\cos }^{2}}\left( x+h \right)-{{\cos }^{2}}\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
Using the identity $ {{\cos }^{2}}B-{{\cos }^{2}}A=\sin (A+B)\sin (A-B) $ , we get:
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ \left( x+h \right)+\left( x \right) \right]\sin \left[ \left( x+h \right)-\left( x \right) \right]}{h} \right] $
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( 2x+h \right)\sin \left( h \right)}{h} \right] $
Which can be written as:
= $ \underset{h\to 0}{\mathop{\lim }}\,\sin \left( 2x+h \right)\times \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h} $
Applying the limit and using $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ , we get:
= $ \sin \left( 2x+0 \right)\times 1 $
= $ \sin 2x $
Therefore, the derivative of $ {{\cos }^{2}}x $ is $ \sin 2x $ .
Note: Differentiability of a Function: A function $ f(x) $ is differentiable at $ x=a $ in its domain, if its derivative is continuous at $ a $ .
This means that $ {f}'(a) $ must exist, or equivalently: $ \underset{x\to {{a}^{+}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to a}{\mathop{\lim }}\,{f}'(x)={f}'(a) $ .
A continuous function is always differentiable but a differentiable function needs not be continuous.
Indeterminate Forms: Any expression whose value cannot be defined, like $ \dfrac{0}{0},\pm \dfrac{\infty }{\infty },{{0}^{0}},{{\infty }^{0}} $ etc.
L'Hospital's Rule: For the differentiable functions f(x) and g(x), the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)} $ , if $ f(x) $ and $ g(x) $ are both 0 or $ \pm \infty $ (i.e. an Indeterminate Form) is equal to the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{{f}'(x)}{{g}'(x)} $ , if it exists.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Questions & Answers - Ask your doubts

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Distinguish between esterification and saponification class 12 chemistry CBSE

Give five points to show the significance of varia class 12 biology CBSE

How was the Civil Disobedience Movement different from class 12 social science CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

The Coordination number of bcc fcc ccp hcp is class 12 chemistry CBSE

Difference between saponification and esterificati class 12 chemistry CBSE
