Answer
Verified
406.6k+ views
Hint: The first principle of derivatives: Given a function $ y=f\left( x \right) $ , its first derivative, the rate of change of y with respect to the change in x, is defined by: $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $ .
Finding the derivative of a function by computing this limit is known as differentiation from first principles.
Use the identity $ \sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B={{\cos }^{2}}B-{{\cos }^{2}}A $ .
We know that $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ .
Complete step by step answer:
Let's say that the given function is $ y=f(x)={{\cos }^{2}}x $ .
For a change from $ x $ to $ x+h $ , the value of y changes from $ f(x) $ to $ f(x+h) $ .
The rate of change of y with respect to the change in x, will be given by:
$ \dfrac{\text{Change in the value of y}}{\text{Change in the value of x}}=\dfrac{f(x+h)-f(x)}{(x+h)-(x)} $
This rate for very small values of the change in x, is called the derivative of the function and is represented by $ \dfrac{dy}{dx} $ .
∴ $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
⇒ $ \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{{{\cos }^{2}}\left( x+h \right)-{{\cos }^{2}}\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
Using the identity $ {{\cos }^{2}}B-{{\cos }^{2}}A=\sin (A+B)\sin (A-B) $ , we get:
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ \left( x+h \right)+\left( x \right) \right]\sin \left[ \left( x+h \right)-\left( x \right) \right]}{h} \right] $
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( 2x+h \right)\sin \left( h \right)}{h} \right] $
Which can be written as:
= $ \underset{h\to 0}{\mathop{\lim }}\,\sin \left( 2x+h \right)\times \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h} $
Applying the limit and using $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ , we get:
= $ \sin \left( 2x+0 \right)\times 1 $
= $ \sin 2x $
Therefore, the derivative of $ {{\cos }^{2}}x $ is $ \sin 2x $ .
Note: Differentiability of a Function: A function $ f(x) $ is differentiable at $ x=a $ in its domain, if its derivative is continuous at $ a $ .
This means that $ {f}'(a) $ must exist, or equivalently: $ \underset{x\to {{a}^{+}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to a}{\mathop{\lim }}\,{f}'(x)={f}'(a) $ .
A continuous function is always differentiable but a differentiable function needs not be continuous.
Indeterminate Forms: Any expression whose value cannot be defined, like $ \dfrac{0}{0},\pm \dfrac{\infty }{\infty },{{0}^{0}},{{\infty }^{0}} $ etc.
L'Hospital's Rule: For the differentiable functions f(x) and g(x), the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)} $ , if $ f(x) $ and $ g(x) $ are both 0 or $ \pm \infty $ (i.e. an Indeterminate Form) is equal to the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{{f}'(x)}{{g}'(x)} $ , if it exists.
Finding the derivative of a function by computing this limit is known as differentiation from first principles.
Use the identity $ \sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B={{\cos }^{2}}B-{{\cos }^{2}}A $ .
We know that $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ .
Complete step by step answer:
Let's say that the given function is $ y=f(x)={{\cos }^{2}}x $ .
For a change from $ x $ to $ x+h $ , the value of y changes from $ f(x) $ to $ f(x+h) $ .
The rate of change of y with respect to the change in x, will be given by:
$ \dfrac{\text{Change in the value of y}}{\text{Change in the value of x}}=\dfrac{f(x+h)-f(x)}{(x+h)-(x)} $
This rate for very small values of the change in x, is called the derivative of the function and is represented by $ \dfrac{dy}{dx} $ .
∴ $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{f\left( x+h \right)-f\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
⇒ $ \dfrac{d}{dx}\left( {{\cos }^{2}}x \right)=\underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{{{\cos }^{2}}\left( x+h \right)-{{\cos }^{2}}\left( x \right)}{\left( x+h \right)-\left( x \right)} \right] $
Using the identity $ {{\cos }^{2}}B-{{\cos }^{2}}A=\sin (A+B)\sin (A-B) $ , we get:
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left[ \left( x+h \right)+\left( x \right) \right]\sin \left[ \left( x+h \right)-\left( x \right) \right]}{h} \right] $
= $ \underset{h\to 0}{\mathop{\lim }}\,\left[ \dfrac{\sin \left( 2x+h \right)\sin \left( h \right)}{h} \right] $
Which can be written as:
= $ \underset{h\to 0}{\mathop{\lim }}\,\sin \left( 2x+h \right)\times \underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sin \left( h \right)}{h} $
Applying the limit and using $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1 $ , we get:
= $ \sin \left( 2x+0 \right)\times 1 $
= $ \sin 2x $
Therefore, the derivative of $ {{\cos }^{2}}x $ is $ \sin 2x $ .
Note: Differentiability of a Function: A function $ f(x) $ is differentiable at $ x=a $ in its domain, if its derivative is continuous at $ a $ .
This means that $ {f}'(a) $ must exist, or equivalently: $ \underset{x\to {{a}^{+}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to {{a}^{-}}}{\mathop{\lim }}\,{f}'(x)=\underset{x\to a}{\mathop{\lim }}\,{f}'(x)={f}'(a) $ .
A continuous function is always differentiable but a differentiable function needs not be continuous.
Indeterminate Forms: Any expression whose value cannot be defined, like $ \dfrac{0}{0},\pm \dfrac{\infty }{\infty },{{0}^{0}},{{\infty }^{0}} $ etc.
L'Hospital's Rule: For the differentiable functions f(x) and g(x), the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)} $ , if $ f(x) $ and $ g(x) $ are both 0 or $ \pm \infty $ (i.e. an Indeterminate Form) is equal to the $ \underset{x\to c}{\mathop{\lim }}\,\dfrac{{f}'(x)}{{g}'(x)} $ , if it exists.
Recently Updated Pages
Use the comparative degree of comparison in the following class 10 english CBSE
Nuclear Power station in Rajasthan is situated at a class 10 social science CBSE
Read the following telephone conversation which took class 10 english CBSE
What steps were taken by Robespierres government especially class 10 social science CBSE
Choose the sentence with the correct punctuation marks class 10 english CBSE
Use the comparative form in the following sentence class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE