Answer
Verified
396.9k+ views
Hint: In the question they have clearly mentioned to use the first principle of differentiation which is stated as follows. Given a function $y = f(x)$, its derivative or the rate of change of $f(x)$ with respect to $x$ is defined as $\dfrac{d}{{dx}}f(x) = f'(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$, Where $h$ is an infinitesimally small positive number.
Complete step-by-step answer:
Let \[f\left( x \right)\] be a real function in its domain. A function defined such that $\mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$. if it exists is said to be derivative of the function \[f\left( x \right)\]. This is known as the first principle of the derivative. The first principle of a derivative is also called the Delta Method.
Let's consider the given function.
\[ \Rightarrow \,\,\,\,f\left( x \right) = {x^3} - 27\]
Let us differentiate $f(x)$ with respect to $x$ by using the formula $\dfrac{d}{{dx}}f(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$
For finding $f(x + h)$ we replace $x$ by $x + h$ in the given function.
$ \Rightarrow \dfrac{d}{{dx}}\left( {{x^3} - 27} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{{\left( {x + h} \right)}^3} - 27} \right) - \left( {{x^3} - 27} \right)}}{h}$
Now, by using a algebraic identity \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}\].
Here, \[a = x\] and \[b = h\], then we have
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{x^3} + {h^3} + 3{x^2}h + 3x{h^2} - 27} \right) - \left( {{x^3} - 27} \right)}}{h}$
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{x^3} + {h^3} + 3{x^2}h + 3x{h^2} - 27 - {x^3} + 27}}{h}$
On simplification, we get
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{h^3} + 3{x^2}h + 3x{h^2}}}{h}\]
Taking h as common in numerator, then
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {{h^2} + 3{x^2} + 3xh} \right)}}{h}\]
On cancelling the like terms i.e., h on both numerator and denominator, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \left( {{h^2} + 3{x^2} + 3xh} \right)\]
On applying a limit h tends to 0 \[\left( {h \to 0} \right)\] to the function, we have
\[ \Rightarrow f'\left( x \right) = {\left( 0 \right)^2} + 3{x^2} + 3x\left( 0 \right)\]
\[ \Rightarrow f'\left( x \right) = 0 + 3{x^2} + 0\]
On simplification, we get
\[ \Rightarrow f'\left( x \right) = 3{x^2}\]
Therefore, the derivative of \[{x^3} - 27\] is \[3{x^2}\].
So, the correct answer is “ \[3{x^2}\]”.
Note: In the question if they do not mention using first principle, we can use a direct method to differentiate the function by using a standard differentiation formula, which is easier than first principle. When differentiate using a first principle we must know the formula and know the product and quotient properties of the limit functions.
Complete step-by-step answer:
Let \[f\left( x \right)\] be a real function in its domain. A function defined such that $\mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$. if it exists is said to be derivative of the function \[f\left( x \right)\]. This is known as the first principle of the derivative. The first principle of a derivative is also called the Delta Method.
Let's consider the given function.
\[ \Rightarrow \,\,\,\,f\left( x \right) = {x^3} - 27\]
Let us differentiate $f(x)$ with respect to $x$ by using the formula $\dfrac{d}{{dx}}f(x) = \mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f(x)}}{h}$
For finding $f(x + h)$ we replace $x$ by $x + h$ in the given function.
$ \Rightarrow \dfrac{d}{{dx}}\left( {{x^3} - 27} \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{{\left( {x + h} \right)}^3} - 27} \right) - \left( {{x^3} - 27} \right)}}{h}$
Now, by using a algebraic identity \[{\left( {a + b} \right)^3} = {a^3} + {b^3} + 3{a^2}b + 3a{b^2}\].
Here, \[a = x\] and \[b = h\], then we have
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{\left( {{x^3} + {h^3} + 3{x^2}h + 3x{h^2} - 27} \right) - \left( {{x^3} - 27} \right)}}{h}$
$ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{x^3} + {h^3} + 3{x^2}h + 3x{h^2} - 27 - {x^3} + 27}}{h}$
On simplification, we get
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{{h^3} + 3{x^2}h + 3x{h^2}}}{h}\]
Taking h as common in numerator, then
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \dfrac{{h\left( {{h^2} + 3{x^2} + 3xh} \right)}}{h}\]
On cancelling the like terms i.e., h on both numerator and denominator, we have
\[ \Rightarrow f'\left( x \right) = \mathop {\lim }\limits_{h \to 0} \left( {{h^2} + 3{x^2} + 3xh} \right)\]
On applying a limit h tends to 0 \[\left( {h \to 0} \right)\] to the function, we have
\[ \Rightarrow f'\left( x \right) = {\left( 0 \right)^2} + 3{x^2} + 3x\left( 0 \right)\]
\[ \Rightarrow f'\left( x \right) = 0 + 3{x^2} + 0\]
On simplification, we get
\[ \Rightarrow f'\left( x \right) = 3{x^2}\]
Therefore, the derivative of \[{x^3} - 27\] is \[3{x^2}\].
So, the correct answer is “ \[3{x^2}\]”.
Note: In the question if they do not mention using first principle, we can use a direct method to differentiate the function by using a standard differentiation formula, which is easier than first principle. When differentiate using a first principle we must know the formula and know the product and quotient properties of the limit functions.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE