Find the derivative of $y = \cos \left( {\cos x} \right)$.
Answer
Verified
443.4k+ views
Hint: We know Chain Rule: $\left( {f(g(x))} \right) = f'(g(x))g'(x)$
By using Chain rule we can solve this problem.
Since we cannot find the direct derivative of the given question we have to use the chain rule. So we must convert our question in the form of the equation above such that we have to find the values of every term in the above equation and substitute it back. In that way we would be able to find the solution for the given question.
Complete step by step solution:
Given
$y = \cos \left( {\cos x} \right).............................\left( i \right)$
So according to our question we need to find \[\dfrac{{dy}}{{dx}} = \dfrac{{d\cos \left( {\cos x}
\right)}}{{dx}}\]
Thus here we can use chain rule to find the derivative since we can’t find the derivative with any direct equation.
Now we know that chain rule is:\[f(g(x)) = f'(g(x))g'(x).......................\left( {ii} \right)\]
Such that on comparing (ii), if:
\[f\left( x \right) = \cos x\,\,{\text{and}}\,\,g\left( x \right) = \cos x.......................\left( {iii} \right)\]
Now to apply chain rule, let:
$u = \cos x$
Then we can say that $f\left( {g\left( x \right)} \right) = \cos u.......................\left( {iv} \right)$
Now on comparing to (ii) we can write:
\[
\dfrac{{dy}}{{dx}} = \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = f'(g(x))g'(x) \\
\Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = \dfrac{d}{{du}}\left( {\cos u}
\right)\dfrac{d}{{dx}}\left( {\cos x} \right)..............................\left( v \right) \\
\]
On observing (v) we can say that the derivative of $\cos u$with respect to $du$would be$ - \sin u$.
So on substituting we get:
\[
\Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = \dfrac{d}{{du}}\left( {\cos u}
\right)\dfrac{d}{{dx}}\left( {\cos x} \right) \\
\Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = - \sin \left( u \right)\dfrac{d}{{dx}}\left(
{\cos x} \right).................................\left( {vi} \right) \\
\]
Substituting $u = \cos x$back to (vi) we get:
\[ \Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = - \sin \left( {\cos x}
\right)\dfrac{d}{{dx}}\left( {\cos x} \right).......................\left( {vii} \right)\]
Also we know that the derivative of $\cos x$with respect to $dx$would be$ - \sin x$.
Substituting this in (vii) we get:
\[
\Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = \left( { - \sin \left( {\cos x} \right)}
\right)\left( { - \sin x} \right) \\
\Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = \left( {\sin \left( {\cos x} \right)}
\right)\left( {\sin x} \right) \\
\]
On rearranging the terms we get:
\[\dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = \sin x\sin \left( {\cos x} \right)........................\left( {viii}
\right)\]
Therefore we can say that the derivative of$y = \cos \left( {\cos x} \right)$ is \[\sin x\sin \left( {\cos x} \right)\].
Note:
The Chain Rule can also be written as:
$\dfrac{{df}}{{dx}} = \dfrac{{df}}{{dg}} \times \dfrac{{dg}}{{dh}} \times \dfrac{{dh}}{{dx}}$
It mainly tells us how to differentiate composite functions. Chain rule is mainly used for finding the derivative of a composite function. Also care must be taken while using chain rule since it should be applied only on composite functions and applying chain rule that isn’t composite may result in a wrong derivative.
By using Chain rule we can solve this problem.
Since we cannot find the direct derivative of the given question we have to use the chain rule. So we must convert our question in the form of the equation above such that we have to find the values of every term in the above equation and substitute it back. In that way we would be able to find the solution for the given question.
Complete step by step solution:
Given
$y = \cos \left( {\cos x} \right).............................\left( i \right)$
So according to our question we need to find \[\dfrac{{dy}}{{dx}} = \dfrac{{d\cos \left( {\cos x}
\right)}}{{dx}}\]
Thus here we can use chain rule to find the derivative since we can’t find the derivative with any direct equation.
Now we know that chain rule is:\[f(g(x)) = f'(g(x))g'(x).......................\left( {ii} \right)\]
Such that on comparing (ii), if:
\[f\left( x \right) = \cos x\,\,{\text{and}}\,\,g\left( x \right) = \cos x.......................\left( {iii} \right)\]
Now to apply chain rule, let:
$u = \cos x$
Then we can say that $f\left( {g\left( x \right)} \right) = \cos u.......................\left( {iv} \right)$
Now on comparing to (ii) we can write:
\[
\dfrac{{dy}}{{dx}} = \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = f'(g(x))g'(x) \\
\Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = \dfrac{d}{{du}}\left( {\cos u}
\right)\dfrac{d}{{dx}}\left( {\cos x} \right)..............................\left( v \right) \\
\]
On observing (v) we can say that the derivative of $\cos u$with respect to $du$would be$ - \sin u$.
So on substituting we get:
\[
\Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = \dfrac{d}{{du}}\left( {\cos u}
\right)\dfrac{d}{{dx}}\left( {\cos x} \right) \\
\Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = - \sin \left( u \right)\dfrac{d}{{dx}}\left(
{\cos x} \right).................................\left( {vi} \right) \\
\]
Substituting $u = \cos x$back to (vi) we get:
\[ \Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = - \sin \left( {\cos x}
\right)\dfrac{d}{{dx}}\left( {\cos x} \right).......................\left( {vii} \right)\]
Also we know that the derivative of $\cos x$with respect to $dx$would be$ - \sin x$.
Substituting this in (vii) we get:
\[
\Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = \left( { - \sin \left( {\cos x} \right)}
\right)\left( { - \sin x} \right) \\
\Rightarrow \dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = \left( {\sin \left( {\cos x} \right)}
\right)\left( {\sin x} \right) \\
\]
On rearranging the terms we get:
\[\dfrac{{d\cos \left( {\cos x} \right)}}{{dx}} = \sin x\sin \left( {\cos x} \right)........................\left( {viii}
\right)\]
Therefore we can say that the derivative of$y = \cos \left( {\cos x} \right)$ is \[\sin x\sin \left( {\cos x} \right)\].
Note:
The Chain Rule can also be written as:
$\dfrac{{df}}{{dx}} = \dfrac{{df}}{{dg}} \times \dfrac{{dg}}{{dh}} \times \dfrac{{dh}}{{dx}}$
It mainly tells us how to differentiate composite functions. Chain rule is mainly used for finding the derivative of a composite function. Also care must be taken while using chain rule since it should be applied only on composite functions and applying chain rule that isn’t composite may result in a wrong derivative.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE