Find the differential equation of the family of parabolas with vertex at (h, 0) and the principal axis along the x-axis.
Answer
Verified
511.8k+ views
Hint: Here, we need to find the differential equation i.e.., an equation in the form of $\frac{{dy}}{{dx}}$by using the property of the parabola i.e..,$PS = PM$.
Given, vertex at (h, 0) and principal axis along x-axis.
Let $P(x,y)$be a point on the parabola ${y^2} = 4ax$
As we know that the focus ‘S’ coordinates will be$(a + h,0)$. Therefore, $PS = \sqrt {({{(x - (a + h))}^2} + {y^2}} $.
As we know that the perpendicular distance from point $({x_1},{y_1})$ to a line $ax + by + c = 0$is$\frac{{\left| {a{x_1} + b{y_1} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}$. It is also given that the principal axis is along the x-axis .Therefore, PM can be written as the Perpendicular distance from Point p to the principal axis.
Hence $PM = \frac{{\left| {x + a - h} \right|}}{{\sqrt {{1^2} + 0} }} = \left| {x + a - h} \right|$
From Parabola, we know that $PS = PM$
Hence, substituting the values of PS and PM we get
$\sqrt {({{(x - (a + h))}^2} + {y^2}} = \left| {x + a - h} \right|$
Squaring on both sides we get
\[
\Rightarrow {(x - {(a + h)^2})^2} + {y^2} = {(x + (a - h))^2} \\
\Rightarrow {x^2} + {(a + h)^2} - 2x(a + h) + {y^2} = {x^2} + {(a - h)^2} + 2x(a - h) \\
\Rightarrow {x^2} + {a^2} + {h^2} + 2ah - 2ax - 2ah + {y^2} = {x^2} + {a^2} + {h^2} - 2ah + 2ax - 2ah \\
\Rightarrow 4ah - 4ax + {y^2} = 0 \\
\Rightarrow {y^2} = 4a(x - h) \to (1) \\
\]
Differentiating equation (1) with respect to x we get
$2y\frac{{dy}}{{dx}} = 4a(1 - 0)$
$2y\frac{{dy}}{{dx}} = 4a \to (2)$
Putting the value of 4a in equation (1) we get
$
\Rightarrow {y^2} = 2y\frac{{dy}}{{dx}}(x - h) \\
\Rightarrow \frac{{dy}}{{dx}} = \frac{y}{{2(x - h)}} \\
$
Hence the differential equation the differential equation of the family of parabolas with vertex at (h, 0) and the principal axis along the x-axis is$\frac{y}{{2(x - h)}}$.
Note: To solve the given problem, concepts of the parabola have to be known properly and use the formulae$PS = PM$.
Given, vertex at (h, 0) and principal axis along x-axis.
Let $P(x,y)$be a point on the parabola ${y^2} = 4ax$
As we know that the focus ‘S’ coordinates will be$(a + h,0)$. Therefore, $PS = \sqrt {({{(x - (a + h))}^2} + {y^2}} $.
As we know that the perpendicular distance from point $({x_1},{y_1})$ to a line $ax + by + c = 0$is$\frac{{\left| {a{x_1} + b{y_1} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}$. It is also given that the principal axis is along the x-axis .Therefore, PM can be written as the Perpendicular distance from Point p to the principal axis.
Hence $PM = \frac{{\left| {x + a - h} \right|}}{{\sqrt {{1^2} + 0} }} = \left| {x + a - h} \right|$
From Parabola, we know that $PS = PM$
Hence, substituting the values of PS and PM we get
$\sqrt {({{(x - (a + h))}^2} + {y^2}} = \left| {x + a - h} \right|$
Squaring on both sides we get
\[
\Rightarrow {(x - {(a + h)^2})^2} + {y^2} = {(x + (a - h))^2} \\
\Rightarrow {x^2} + {(a + h)^2} - 2x(a + h) + {y^2} = {x^2} + {(a - h)^2} + 2x(a - h) \\
\Rightarrow {x^2} + {a^2} + {h^2} + 2ah - 2ax - 2ah + {y^2} = {x^2} + {a^2} + {h^2} - 2ah + 2ax - 2ah \\
\Rightarrow 4ah - 4ax + {y^2} = 0 \\
\Rightarrow {y^2} = 4a(x - h) \to (1) \\
\]
Differentiating equation (1) with respect to x we get
$2y\frac{{dy}}{{dx}} = 4a(1 - 0)$
$2y\frac{{dy}}{{dx}} = 4a \to (2)$
Putting the value of 4a in equation (1) we get
$
\Rightarrow {y^2} = 2y\frac{{dy}}{{dx}}(x - h) \\
\Rightarrow \frac{{dy}}{{dx}} = \frac{y}{{2(x - h)}} \\
$
Hence the differential equation the differential equation of the family of parabolas with vertex at (h, 0) and the principal axis along the x-axis is$\frac{y}{{2(x - h)}}$.
Note: To solve the given problem, concepts of the parabola have to be known properly and use the formulae$PS = PM$.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE