
Find the distance between the parallel planes \[\overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) = 5\] and \[\overline r \cdot \left( {6\overline i - 9\overline j + 18\overline k } \right) + 20 = 0\].
Answer
576.6k+ views
Hint: First we will rewrite the equations in the general forms to find the distance between two parallel planes \[\overline r \cdot \left( {a\overline i + b\overline j + c\overline k } \right) + {d_1} = 0\] and \[\overline r \cdot \left( {a\overline i + b\overline j + c\overline k } \right) + {d_2} = 0\], using the formula, \[\dfrac{{\left| {{d_1} - {d_2}} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\].
Complete step-by-step answer:
We are given that the planes \[\overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) = 5\] and \[\overline r \cdot \left( {6\overline i - 9\overline j + 18\overline k } \right) + 20 = 0\] are parallel.
Rewriting the equation of the plane \[\overline r \cdot \left( {6\overline i - 9\overline j + 18\overline k } \right) + 20 = 0\] by dividing both sides by 3, we get
\[
\Rightarrow \dfrac{{\overline r \cdot \left( {6\overline i - 9\overline j + 18\overline k } \right)}}{3} + \dfrac{{20}}{3} = 0 \\
\Rightarrow \overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) + \dfrac{{20}}{3} = 0{\text{ .......(1)}} \\
\]
Subtracting the equation \[\overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) = 5\] by 5 on both sides, we get
\[
\Rightarrow \overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) - 5 = 5 - 5 \\
\Rightarrow \overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) - 5 = 0{\text{ ......(2)}} \\
\]
We know that the distance between two parallel planes \[\overline r \cdot \left( {a\overline i + b\overline j + c\overline k } \right) + {d_1} = 0\] and \[\overline r \cdot \left( {a\overline i + b\overline j + c\overline k } \right) + {d_2} = 0\] is calculated using the formula, \[\dfrac{{\left| {{d_1} - {d_2}} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\].
Finding the values of a,b ,c ,$d_1$ , and $d_2$ from comparing the equations (1) and (2) to the above equations, we get
\[a = 2\]
\[b = - 3\]
\[c = 6\]
\[{d_1} = \dfrac{{20}}{3}\]
\[{d_2} = - 5\]
Substituting these values in the above formula of distance, we get
\[
\Rightarrow \dfrac{{\left| {\dfrac{{20}}{3} - \left( { - 5} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2} + {6^2}} }} \\
\Rightarrow \dfrac{{\left| {\dfrac{{20 + 15}}{3}} \right|}}{{\sqrt {4 + 9 + 36} }} \\
\Rightarrow \dfrac{{35}}{{3\sqrt {99} }} \\
\Rightarrow \dfrac{{35}}{{9\sqrt {11} }} \\
\]
Thus, the distance is \[\dfrac{{35}}{{9\sqrt {11} }}\].
Note: In solving these types of questions, students need to know that the distance between two planes implies the perpendicular distance, and the perpendicular distance is also the shortest distance. If the perpendicular distance is given between two planes then the plane must be parallel to each other as this distance always measures in two planes, which are parallel.
Complete step-by-step answer:
We are given that the planes \[\overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) = 5\] and \[\overline r \cdot \left( {6\overline i - 9\overline j + 18\overline k } \right) + 20 = 0\] are parallel.
Rewriting the equation of the plane \[\overline r \cdot \left( {6\overline i - 9\overline j + 18\overline k } \right) + 20 = 0\] by dividing both sides by 3, we get
\[
\Rightarrow \dfrac{{\overline r \cdot \left( {6\overline i - 9\overline j + 18\overline k } \right)}}{3} + \dfrac{{20}}{3} = 0 \\
\Rightarrow \overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) + \dfrac{{20}}{3} = 0{\text{ .......(1)}} \\
\]
Subtracting the equation \[\overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) = 5\] by 5 on both sides, we get
\[
\Rightarrow \overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) - 5 = 5 - 5 \\
\Rightarrow \overline r \cdot \left( {2\overline i - 3\overline j + 6\overline k } \right) - 5 = 0{\text{ ......(2)}} \\
\]
We know that the distance between two parallel planes \[\overline r \cdot \left( {a\overline i + b\overline j + c\overline k } \right) + {d_1} = 0\] and \[\overline r \cdot \left( {a\overline i + b\overline j + c\overline k } \right) + {d_2} = 0\] is calculated using the formula, \[\dfrac{{\left| {{d_1} - {d_2}} \right|}}{{\sqrt {{a^2} + {b^2} + {c^2}} }}\].
Finding the values of a,b ,c ,$d_1$ , and $d_2$ from comparing the equations (1) and (2) to the above equations, we get
\[a = 2\]
\[b = - 3\]
\[c = 6\]
\[{d_1} = \dfrac{{20}}{3}\]
\[{d_2} = - 5\]
Substituting these values in the above formula of distance, we get
\[
\Rightarrow \dfrac{{\left| {\dfrac{{20}}{3} - \left( { - 5} \right)} \right|}}{{\sqrt {{2^2} + {{\left( { - 3} \right)}^2} + {6^2}} }} \\
\Rightarrow \dfrac{{\left| {\dfrac{{20 + 15}}{3}} \right|}}{{\sqrt {4 + 9 + 36} }} \\
\Rightarrow \dfrac{{35}}{{3\sqrt {99} }} \\
\Rightarrow \dfrac{{35}}{{9\sqrt {11} }} \\
\]
Thus, the distance is \[\dfrac{{35}}{{9\sqrt {11} }}\].
Note: In solving these types of questions, students need to know that the distance between two planes implies the perpendicular distance, and the perpendicular distance is also the shortest distance. If the perpendicular distance is given between two planes then the plane must be parallel to each other as this distance always measures in two planes, which are parallel.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

