
How do you find the distance between two parallel lines in 3-dimensional space?
Answer
373.8k+ views
Hint: In the above question, we are given two parallel lines in a 3-dimensional space. We have to find the distance between those two given lines. Recall the formula of cross product of two vectors. The cross product of two vectors is itself a vector and is given by the formula \[\overrightarrow a \times \overrightarrow b = \left| a \right|\left| b \right|\sin \theta \widehat n\], where \[\widehat n\] is the unit vector in the perpendicular direction of both vectors. This formula will be useful in finding the required distance, let see how.
Complete step by step answer:
Given that, two parallel lines that lie in a 3-dimensional space. Let the two parallel lines be \[{l_1}\] and \[{l_2}\]. Let the equations of the two parallel lines be,
\[{l_1} \Rightarrow \overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow b \]
And
\[{l_2} \Rightarrow \overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow b \]
Where \[\overrightarrow {{a_1}} \] and \[\overrightarrow {{a_2}} \] are points on \[{l_1}\] and \[{l_2}\] and \[\overrightarrow b \] is the line parallel to both \[{l_1}\] and \[{l_2}\] .
A diagram of both the lines is shown above where the distance between \[{l_1}\] and \[{l_2}\] is PT. Consider the vectors \[\overrightarrow {ST} \] and \[\overrightarrow b \] , their cross product can be written using the formula,
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = \left| a \right|\left| b \right|\sin \theta \,\widehat n\]
As,
\[ \Rightarrow \overrightarrow b \times \overrightarrow {ST} = \left| {\overrightarrow b } \right|\left| {\overrightarrow {ST} } \right|\sin \theta \cdot \widehat n\] ...(1)
Also the distance ST can be written as,
\[\overrightarrow {ST} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} \] ...(2)
Now from the diagram, we have
\[ \Rightarrow \sin \theta = \left| {\dfrac{{PT}}{{ST}}} \right|\]
That gives,
\[ \Rightarrow \left| {ST} \right|\sin \theta = \left| {PT} \right|\]
Multiplying both sides by \[\left| {\overrightarrow b } \right| \cdot \widehat n\] , we get
\[ \Rightarrow \left| {\overrightarrow b } \right|\left| {ST} \right|\sin \theta \cdot \widehat n = \left| {\overrightarrow b } \right| \cdot \left| {PT} \right| \cdot \widehat n\]
Now, using the equation ...(1) we can write the above equation as
\[ \Rightarrow \overrightarrow b \times \overrightarrow {ST} = \left| {\overrightarrow b } \right|\left| {PT} \right| \cdot \widehat n\]
Taking modulus of both sides,
\[ \Rightarrow \left| {\overrightarrow b \times \overrightarrow {ST} } \right| = \left| {\overrightarrow b } \right|\left| {PT} \right| \cdot \left| {\widehat n} \right|\]
Since \[\left| {\widehat n} \right| = 1\] that gives,
\[ \Rightarrow \left| {\overrightarrow b \times \overrightarrow {ST} } \right| = \left| {\overrightarrow b } \right|\left| {PT} \right|\]
Again, putting \[\overrightarrow {ST} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} \] we get
\[ \Rightarrow \left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right| = \left| {\overrightarrow b } \right|\left| {PT} \right|\]
\[ \therefore \left| {PT} \right| = \dfrac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}\]
That is the required distance between the two parallel lines \[{l_1}\] and \[{l_2}\].
Therefore, the distance between two parallel lines in a 3-dimensional space is given by \[\dfrac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}\].
Note: In three-dimensional geometry, skew lines are two lines that do not intersect and also are not parallel. As a result they do not lie in the same plane. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. While intersecting lines and parallel lines lie in the same plane i.e. are coplanar.
Complete step by step answer:
Given that, two parallel lines that lie in a 3-dimensional space. Let the two parallel lines be \[{l_1}\] and \[{l_2}\]. Let the equations of the two parallel lines be,
\[{l_1} \Rightarrow \overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow b \]
And
\[{l_2} \Rightarrow \overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow b \]
Where \[\overrightarrow {{a_1}} \] and \[\overrightarrow {{a_2}} \] are points on \[{l_1}\] and \[{l_2}\] and \[\overrightarrow b \] is the line parallel to both \[{l_1}\] and \[{l_2}\] .

A diagram of both the lines is shown above where the distance between \[{l_1}\] and \[{l_2}\] is PT. Consider the vectors \[\overrightarrow {ST} \] and \[\overrightarrow b \] , their cross product can be written using the formula,
\[ \Rightarrow \overrightarrow a \times \overrightarrow b = \left| a \right|\left| b \right|\sin \theta \,\widehat n\]
As,
\[ \Rightarrow \overrightarrow b \times \overrightarrow {ST} = \left| {\overrightarrow b } \right|\left| {\overrightarrow {ST} } \right|\sin \theta \cdot \widehat n\] ...(1)
Also the distance ST can be written as,
\[\overrightarrow {ST} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} \] ...(2)
Now from the diagram, we have
\[ \Rightarrow \sin \theta = \left| {\dfrac{{PT}}{{ST}}} \right|\]
That gives,
\[ \Rightarrow \left| {ST} \right|\sin \theta = \left| {PT} \right|\]
Multiplying both sides by \[\left| {\overrightarrow b } \right| \cdot \widehat n\] , we get
\[ \Rightarrow \left| {\overrightarrow b } \right|\left| {ST} \right|\sin \theta \cdot \widehat n = \left| {\overrightarrow b } \right| \cdot \left| {PT} \right| \cdot \widehat n\]
Now, using the equation ...(1) we can write the above equation as
\[ \Rightarrow \overrightarrow b \times \overrightarrow {ST} = \left| {\overrightarrow b } \right|\left| {PT} \right| \cdot \widehat n\]
Taking modulus of both sides,
\[ \Rightarrow \left| {\overrightarrow b \times \overrightarrow {ST} } \right| = \left| {\overrightarrow b } \right|\left| {PT} \right| \cdot \left| {\widehat n} \right|\]
Since \[\left| {\widehat n} \right| = 1\] that gives,
\[ \Rightarrow \left| {\overrightarrow b \times \overrightarrow {ST} } \right| = \left| {\overrightarrow b } \right|\left| {PT} \right|\]
Again, putting \[\overrightarrow {ST} = \overrightarrow {{a_2}} - \overrightarrow {{a_1}} \] we get
\[ \Rightarrow \left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right| = \left| {\overrightarrow b } \right|\left| {PT} \right|\]
\[ \therefore \left| {PT} \right| = \dfrac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}\]
That is the required distance between the two parallel lines \[{l_1}\] and \[{l_2}\].
Therefore, the distance between two parallel lines in a 3-dimensional space is given by \[\dfrac{{\left| {\overrightarrow b \times \left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right)} \right|}}{{\left| {\overrightarrow b } \right|}}\].
Note: In three-dimensional geometry, skew lines are two lines that do not intersect and also are not parallel. As a result they do not lie in the same plane. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. While intersecting lines and parallel lines lie in the same plane i.e. are coplanar.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
What are the elders in Goa nostalgic about class 11 social science CBSE

Formaldehyde at room temperature is ALiquid BGas CSolid class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Why are forests affected by wars class 11 social science CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Give the total number of monochloro products including class 11 chemistry CBSE
