Answer
Verified
428.4k+ views
Hint: To find the domain and range of the given function, we have to form a general equation for $ x $ and $ y $ . Then we need to check whether every element in $ x $ has its image or not. And we need to find in what category the values of $ x $ and $ y $ come under.
Complete step-by-step solution:
Let us consider the given equation,
$ f(x) = y = \dfrac{1}{{1 + x}} $
$ x,y \in \mathbb{R} $ , for any value of $ x $ , we have an image in $ y $ , except when $ x = - 1 $ .
To find the general equation for $ x $ , we solve the above equation and we get,
$
\Rightarrow y(1 + x) = 1 \\
\Rightarrow y + xy = 1 \\
\Rightarrow xy = 1 - y \\
\Rightarrow x = \dfrac{{1 - y}}{y} \\
$
$ x,y \in \mathbb{R} $ , for any value of $ y $ , we have pre image $ x $ , except $ y = 0 $
This is the required equation for $ x $ which is the preimage of $ y $ . For $ x = - 1 $ , we don’t have an image in $ y $ because when we substitute $ x = - 1 $ in $ y $ we get, $ \dfrac{1}{0} $ which is undefined.
And also, for the image $ y = 0 $ , the value of $ x $ will also be undefined. And hence the domain and range of the function will be the real numbers.
Additional information: There are different types of function they are one-one function, into function, onto function and bijective function. These types define the nature of the function with the help of domain, range and its co-domain.
Note: Let us consider a function $ f(x) = y = {x^2} $ , when we put $ x = 1 $ , we get $ y = 1 $ . Here the value of $ x $ is considered as a domain and the value $ y = 1 $ is considered as a range of the domain $ x = 1 $ . If any of the domain $ x $ is present without the image in $ y $ , then it is not a function.
Complete step-by-step solution:
Let us consider the given equation,
$ f(x) = y = \dfrac{1}{{1 + x}} $
$ x,y \in \mathbb{R} $ , for any value of $ x $ , we have an image in $ y $ , except when $ x = - 1 $ .
To find the general equation for $ x $ , we solve the above equation and we get,
$
\Rightarrow y(1 + x) = 1 \\
\Rightarrow y + xy = 1 \\
\Rightarrow xy = 1 - y \\
\Rightarrow x = \dfrac{{1 - y}}{y} \\
$
$ x,y \in \mathbb{R} $ , for any value of $ y $ , we have pre image $ x $ , except $ y = 0 $
This is the required equation for $ x $ which is the preimage of $ y $ . For $ x = - 1 $ , we don’t have an image in $ y $ because when we substitute $ x = - 1 $ in $ y $ we get, $ \dfrac{1}{0} $ which is undefined.
And also, for the image $ y = 0 $ , the value of $ x $ will also be undefined. And hence the domain and range of the function will be the real numbers.
Additional information: There are different types of function they are one-one function, into function, onto function and bijective function. These types define the nature of the function with the help of domain, range and its co-domain.
Note: Let us consider a function $ f(x) = y = {x^2} $ , when we put $ x = 1 $ , we get $ y = 1 $ . Here the value of $ x $ is considered as a domain and the value $ y = 1 $ is considered as a range of the domain $ x = 1 $ . If any of the domain $ x $ is present without the image in $ y $ , then it is not a function.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE