How do you find the equation in slope intercept form, of the line passing through of the line passing through the points $( - 1,2)$ and $(3, - 4)$ ?
Answer
Verified
442.8k+ views
Hint: In this question, we are given two points and we have to find the equation of the line passing through these two points. The standard slope-intercept equation of a line is $y = mx + c$ where m is the slope of this line and c is the x-intercept of the line. From the 2 given points, we will find the slope of the line and then plug in the values in the slope-intercept form. Or we can directly use the equation $y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}(x - {x_1})$ to find out the equation of the line passing through the points $( - 1,2)$ and $(3, - 4)$ .
Complete step by step solution:
The given line is passing through the points $( - 1,2)$ and $(3, - 4)$
On plugging the known values in the equation $y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}(x - {x_1})$ , we get –
$
y - 2 = \dfrac{{ - 4 - 2}}{{3 - ( - 1)}}[x - ( - 1)] \\
\Rightarrow y - 2 = \dfrac{{ - 6}}{4}(x + 1) \\
\Rightarrow y - 2 = \dfrac{{ - 3}}{2}(x + 1) \\
\Rightarrow 2(y - 2) = - 3(x + 1) \\
\Rightarrow 2y - 2 = - 3x - 3 \\
\Rightarrow 2y + 3x + 1 = 0 \\
$
Hence, the equation of the line passing through the points $( - 1,2)$ and $(3, - 4)$ is $2y + 3x + 1 = 0$
Note: In mathematics, slope or also known as the gradient of a line is a number that describes both the direction and the steepness of the line. It is often denoted by the letter “m”. For a line present in a plane containing x and y axes, the slope of the line is given as the ratio of the change in the y-coordinate and the corresponding change in the x-coordinate between two distinct points of the line, that is, the slope of a line joining two points $({x_1},{y_1})$ and $({x_2},{y_2})$ is given by the formula $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$ . We can solve the above question by first calculating the slope by using this formula.
Complete step by step solution:
The given line is passing through the points $( - 1,2)$ and $(3, - 4)$
On plugging the known values in the equation $y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}(x - {x_1})$ , we get –
$
y - 2 = \dfrac{{ - 4 - 2}}{{3 - ( - 1)}}[x - ( - 1)] \\
\Rightarrow y - 2 = \dfrac{{ - 6}}{4}(x + 1) \\
\Rightarrow y - 2 = \dfrac{{ - 3}}{2}(x + 1) \\
\Rightarrow 2(y - 2) = - 3(x + 1) \\
\Rightarrow 2y - 2 = - 3x - 3 \\
\Rightarrow 2y + 3x + 1 = 0 \\
$
Hence, the equation of the line passing through the points $( - 1,2)$ and $(3, - 4)$ is $2y + 3x + 1 = 0$
Note: In mathematics, slope or also known as the gradient of a line is a number that describes both the direction and the steepness of the line. It is often denoted by the letter “m”. For a line present in a plane containing x and y axes, the slope of the line is given as the ratio of the change in the y-coordinate and the corresponding change in the x-coordinate between two distinct points of the line, that is, the slope of a line joining two points $({x_1},{y_1})$ and $({x_2},{y_2})$ is given by the formula $\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$ . We can solve the above question by first calculating the slope by using this formula.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE