
Find the equation of circle whose center is $( - 3,1)$ and which pass through the point $(5,2)$
Answer
518.7k+ views
Hint: Coordinate geometry is defined as the study of the geometry using the coordinates points. Using coordinate geometry we find the distance between the two points. Circle in the coordinate geometry, the equation of circle is given by
$\therefore {(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$.
If the coordinate satisfies the equation then the point is in the circle.
Here,
P=Perimeter of circle
R=radius of circle.
Complete step-by-step solution:
Given,
Center of circle$ = ( - 3,1)$
Pass through$ = (5,2)$
Radius of circle=?
As we know that radius is,
$\therefore r = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
Put the value
$ \Rightarrow r = \sqrt {{{\{ 5 - ( - 3)\} }^2} + {{(2 - 1)}^2}} $
Simplify
$ \Rightarrow r = \sqrt {{8^2} + {1^2}} $
$ \Rightarrow r = \sqrt {64 + 1} $
$ \Rightarrow r = \sqrt {65} $
Radius of the circle is $\sqrt {65} $
Cartesian equation of circle is given by
$\therefore {(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$
Put the value.
$ \Rightarrow {(x - ( - 3))^2} + {(y - 1)^2} = {(\sqrt {65} )^2}$
$ \Rightarrow {(x + 3)^2} + {(y - 1)^2} = 65$
$ \Rightarrow {x^2} + {y^2} + 6x - 2y + 10 - 65 = 0$
$ \Rightarrow {x^2} + {y^2} + 6x - 2y - 55 = 0$
The required equation for circle is ${x^2} + {y^2} + 6x - 2y - 55 = 0$
Note: Here we could also find the equation of circle by assuming the general equation of circle and then we put the given points and apply the algebraic operation for finding the unknown variables but that would be a lengthy approach.
$\therefore {(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$.
If the coordinate satisfies the equation then the point is in the circle.
Here,
P=Perimeter of circle
R=radius of circle.
Complete step-by-step solution:
Given,
Center of circle$ = ( - 3,1)$
Pass through$ = (5,2)$
Radius of circle=?
As we know that radius is,
$\therefore r = \sqrt {{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}} $
Put the value
$ \Rightarrow r = \sqrt {{{\{ 5 - ( - 3)\} }^2} + {{(2 - 1)}^2}} $
Simplify
$ \Rightarrow r = \sqrt {{8^2} + {1^2}} $
$ \Rightarrow r = \sqrt {64 + 1} $
$ \Rightarrow r = \sqrt {65} $
Radius of the circle is $\sqrt {65} $
Cartesian equation of circle is given by
$\therefore {(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$
Put the value.
$ \Rightarrow {(x - ( - 3))^2} + {(y - 1)^2} = {(\sqrt {65} )^2}$
$ \Rightarrow {(x + 3)^2} + {(y - 1)^2} = 65$
$ \Rightarrow {x^2} + {y^2} + 6x - 2y + 10 - 65 = 0$
$ \Rightarrow {x^2} + {y^2} + 6x - 2y - 55 = 0$
The required equation for circle is ${x^2} + {y^2} + 6x - 2y - 55 = 0$
Note: Here we could also find the equation of circle by assuming the general equation of circle and then we put the given points and apply the algebraic operation for finding the unknown variables but that would be a lengthy approach.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

