Answer
Verified
499.8k+ views
Hint: Two concentric circles have same center and distance from center to any point on circumference is radius
Given lines, \[{{L}_{1}}=3x+y=4....\left( i \right)\]
\[{{L}_{2}}=x-3y+2=0....\left( ii \right)\]
We have to find the point of intersection of \[{{ L }_{1}}\]and \[{{L}_{2}}\], we will solve equation \[\left( i \right)\]and \[\left( ii \right)\]together.
Taking equation\[\left( i \right)\], \[3x+y=4\]
We get, \[y=4-3x....\left( iii \right)\]
Putting value of \[y\] in equation \[\left( ii \right)\]
\[x-3y+2=0\]
\[x-3\left[ 4-3x \right]+2=0\]
\[x-12+9x+2=0\]
\[10x=10\]
Therefore, we get
Putting value of \[x\] in equation \[\left( iii \right)\]to find the value of \[y\]
\[y=4-3x\]
\[=4-3\left( 1 \right)\]
We get \[y=1\]
Therefore circle \[{{C}_{2}}\]passes through\[\left( x,y \right)=\left( 1,1 \right)\].
Now circle \[{{C}_{2}}\]is concentric with circle:
\[{{C}_{1}}=2\left( {{x}^{2}}+{{y}^{2}} \right)-3x+8y-1=0\]
Dividing the equation by \[2\],
We get \[{{C}_{1}}=\left( {{x}^{2}}+{{y}^{2}} \right)-\dfrac{3x}{2}+4y-\dfrac{1}{2}=0....\left( iv \right)\]
The general equation of circle is,
\[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
Now, we will compare general equation of circle with equation\[\left( iv \right)\].
We get, \[2g=-\dfrac{3}{2}\]
\[g=\dfrac{-3}{4}\]
\[2f=4\]
\[f=2\]
We know that center of circle is \[\left( -g,-f \right)\].
Therefore, \[\text{centre}=\left( \dfrac{3}{4},-2 \right)\]
Since, given circle is concentric with circle to be found \[\left( {{C}_{2}} \right)\], both would have same center.
Now, the new circle \[{{C}_{2}}\]has center at \[C\left( \dfrac{3}{4},-2 \right)\]and it passes through intersection of line \[A=\left( 1,1 \right)\].
Distance of point \[A\left( 1,1 \right)\]to \[C\left( \dfrac{3}{4},-2 \right)\]is radius.
By distance formula,
\[r=AC=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
\[r=AC=\sqrt{{{\left( 1-\dfrac{3}{4} \right)}^{2}}+{{\left( 1+2 \right)}^{2}}}\]
\[=\sqrt{\dfrac{1}{16}+9}\]
We get radius \[=\sqrt{\dfrac{145}{16}}=\dfrac{\sqrt{145}}{4}\text{ units}\]
Now we know that, equation of circle with center \[\left( a,b \right)\]and radius \[r\]
\[={{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}\]
Here, we found the center \[\left( \dfrac{3}{4},-2 \right)\]and radius\[=\dfrac{\sqrt{145}}{4}\text{ units}\]
We get, equation of circle \[={{\left( x-\dfrac{3}{4} \right)}^{2}}+{{\left[ y-\left( -2 \right) \right]}^{2}}=\dfrac{145}{16}\]
\[=16{{x}^{2}}+16{{y}^{2}}-24x+64y=72\]
Therefore, final equation of circle is:
\[2\left( {{x}^{2}}+{{y}^{2}} \right)-3x+8y=9\]
Note:
Elimination method is also suitable to find the intersection of line. Students can also use the method of family of circles passing through a point and having a center with constraint.
Given lines, \[{{L}_{1}}=3x+y=4....\left( i \right)\]
\[{{L}_{2}}=x-3y+2=0....\left( ii \right)\]
We have to find the point of intersection of \[{{ L }_{1}}\]and \[{{L}_{2}}\], we will solve equation \[\left( i \right)\]and \[\left( ii \right)\]together.
Taking equation\[\left( i \right)\], \[3x+y=4\]
We get, \[y=4-3x....\left( iii \right)\]
Putting value of \[y\] in equation \[\left( ii \right)\]
\[x-3y+2=0\]
\[x-3\left[ 4-3x \right]+2=0\]
\[x-12+9x+2=0\]
\[10x=10\]
Therefore, we get
Putting value of \[x\] in equation \[\left( iii \right)\]to find the value of \[y\]
\[y=4-3x\]
\[=4-3\left( 1 \right)\]
We get \[y=1\]
Therefore circle \[{{C}_{2}}\]passes through\[\left( x,y \right)=\left( 1,1 \right)\].
Now circle \[{{C}_{2}}\]is concentric with circle:
\[{{C}_{1}}=2\left( {{x}^{2}}+{{y}^{2}} \right)-3x+8y-1=0\]
Dividing the equation by \[2\],
We get \[{{C}_{1}}=\left( {{x}^{2}}+{{y}^{2}} \right)-\dfrac{3x}{2}+4y-\dfrac{1}{2}=0....\left( iv \right)\]
The general equation of circle is,
\[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
Now, we will compare general equation of circle with equation\[\left( iv \right)\].
We get, \[2g=-\dfrac{3}{2}\]
\[g=\dfrac{-3}{4}\]
\[2f=4\]
\[f=2\]
We know that center of circle is \[\left( -g,-f \right)\].
Therefore, \[\text{centre}=\left( \dfrac{3}{4},-2 \right)\]
Since, given circle is concentric with circle to be found \[\left( {{C}_{2}} \right)\], both would have same center.
Now, the new circle \[{{C}_{2}}\]has center at \[C\left( \dfrac{3}{4},-2 \right)\]and it passes through intersection of line \[A=\left( 1,1 \right)\].
Distance of point \[A\left( 1,1 \right)\]to \[C\left( \dfrac{3}{4},-2 \right)\]is radius.
By distance formula,
\[r=AC=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
\[r=AC=\sqrt{{{\left( 1-\dfrac{3}{4} \right)}^{2}}+{{\left( 1+2 \right)}^{2}}}\]
\[=\sqrt{\dfrac{1}{16}+9}\]
We get radius \[=\sqrt{\dfrac{145}{16}}=\dfrac{\sqrt{145}}{4}\text{ units}\]
Now we know that, equation of circle with center \[\left( a,b \right)\]and radius \[r\]
\[={{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}\]
Here, we found the center \[\left( \dfrac{3}{4},-2 \right)\]and radius\[=\dfrac{\sqrt{145}}{4}\text{ units}\]
We get, equation of circle \[={{\left( x-\dfrac{3}{4} \right)}^{2}}+{{\left[ y-\left( -2 \right) \right]}^{2}}=\dfrac{145}{16}\]
\[=16{{x}^{2}}+16{{y}^{2}}-24x+64y=72\]
Therefore, final equation of circle is:
\[2\left( {{x}^{2}}+{{y}^{2}} \right)-3x+8y=9\]
Note:
Elimination method is also suitable to find the intersection of line. Students can also use the method of family of circles passing through a point and having a center with constraint.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE