
Find the equation of the circle passing through the intersection of the lines \[3x+y=4\] and \[x-3y+2=0\] and concentric with the circle \[2\left( {{x}^{2}}+{{y}^{2}} \right)-3x+8y-1=0\].
Answer
623.7k+ views
Hint: Two concentric circles have same center and distance from center to any point on circumference is radius
Given lines, \[{{L}_{1}}=3x+y=4....\left( i \right)\]
\[{{L}_{2}}=x-3y+2=0....\left( ii \right)\]
We have to find the point of intersection of \[{{ L }_{1}}\]and \[{{L}_{2}}\], we will solve equation \[\left( i \right)\]and \[\left( ii \right)\]together.
Taking equation\[\left( i \right)\], \[3x+y=4\]
We get, \[y=4-3x....\left( iii \right)\]
Putting value of \[y\] in equation \[\left( ii \right)\]
\[x-3y+2=0\]
\[x-3\left[ 4-3x \right]+2=0\]
\[x-12+9x+2=0\]
\[10x=10\]
Therefore, we get
Putting value of \[x\] in equation \[\left( iii \right)\]to find the value of \[y\]
\[y=4-3x\]
\[=4-3\left( 1 \right)\]
We get \[y=1\]
Therefore circle \[{{C}_{2}}\]passes through\[\left( x,y \right)=\left( 1,1 \right)\].
Now circle \[{{C}_{2}}\]is concentric with circle:
\[{{C}_{1}}=2\left( {{x}^{2}}+{{y}^{2}} \right)-3x+8y-1=0\]
Dividing the equation by \[2\],
We get \[{{C}_{1}}=\left( {{x}^{2}}+{{y}^{2}} \right)-\dfrac{3x}{2}+4y-\dfrac{1}{2}=0....\left( iv \right)\]
The general equation of circle is,
\[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
Now, we will compare general equation of circle with equation\[\left( iv \right)\].
We get, \[2g=-\dfrac{3}{2}\]
\[g=\dfrac{-3}{4}\]
\[2f=4\]
\[f=2\]
We know that center of circle is \[\left( -g,-f \right)\].
Therefore, \[\text{centre}=\left( \dfrac{3}{4},-2 \right)\]
Since, given circle is concentric with circle to be found \[\left( {{C}_{2}} \right)\], both would have same center.
Now, the new circle \[{{C}_{2}}\]has center at \[C\left( \dfrac{3}{4},-2 \right)\]and it passes through intersection of line \[A=\left( 1,1 \right)\].
Distance of point \[A\left( 1,1 \right)\]to \[C\left( \dfrac{3}{4},-2 \right)\]is radius.
By distance formula,
\[r=AC=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
\[r=AC=\sqrt{{{\left( 1-\dfrac{3}{4} \right)}^{2}}+{{\left( 1+2 \right)}^{2}}}\]
\[=\sqrt{\dfrac{1}{16}+9}\]
We get radius \[=\sqrt{\dfrac{145}{16}}=\dfrac{\sqrt{145}}{4}\text{ units}\]
Now we know that, equation of circle with center \[\left( a,b \right)\]and radius \[r\]
\[={{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}\]
Here, we found the center \[\left( \dfrac{3}{4},-2 \right)\]and radius\[=\dfrac{\sqrt{145}}{4}\text{ units}\]
We get, equation of circle \[={{\left( x-\dfrac{3}{4} \right)}^{2}}+{{\left[ y-\left( -2 \right) \right]}^{2}}=\dfrac{145}{16}\]
\[=16{{x}^{2}}+16{{y}^{2}}-24x+64y=72\]
Therefore, final equation of circle is:
\[2\left( {{x}^{2}}+{{y}^{2}} \right)-3x+8y=9\]
Note:
Elimination method is also suitable to find the intersection of line. Students can also use the method of family of circles passing through a point and having a center with constraint.
Given lines, \[{{L}_{1}}=3x+y=4....\left( i \right)\]
\[{{L}_{2}}=x-3y+2=0....\left( ii \right)\]
We have to find the point of intersection of \[{{ L }_{1}}\]and \[{{L}_{2}}\], we will solve equation \[\left( i \right)\]and \[\left( ii \right)\]together.
Taking equation\[\left( i \right)\], \[3x+y=4\]
We get, \[y=4-3x....\left( iii \right)\]
Putting value of \[y\] in equation \[\left( ii \right)\]
\[x-3y+2=0\]
\[x-3\left[ 4-3x \right]+2=0\]
\[x-12+9x+2=0\]
\[10x=10\]
Therefore, we get
Putting value of \[x\] in equation \[\left( iii \right)\]to find the value of \[y\]
\[y=4-3x\]
\[=4-3\left( 1 \right)\]
We get \[y=1\]
Therefore circle \[{{C}_{2}}\]passes through\[\left( x,y \right)=\left( 1,1 \right)\].
Now circle \[{{C}_{2}}\]is concentric with circle:
\[{{C}_{1}}=2\left( {{x}^{2}}+{{y}^{2}} \right)-3x+8y-1=0\]
Dividing the equation by \[2\],
We get \[{{C}_{1}}=\left( {{x}^{2}}+{{y}^{2}} \right)-\dfrac{3x}{2}+4y-\dfrac{1}{2}=0....\left( iv \right)\]
The general equation of circle is,
\[{{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0\]
Now, we will compare general equation of circle with equation\[\left( iv \right)\].
We get, \[2g=-\dfrac{3}{2}\]
\[g=\dfrac{-3}{4}\]
\[2f=4\]
\[f=2\]
We know that center of circle is \[\left( -g,-f \right)\].
Therefore, \[\text{centre}=\left( \dfrac{3}{4},-2 \right)\]
Since, given circle is concentric with circle to be found \[\left( {{C}_{2}} \right)\], both would have same center.
Now, the new circle \[{{C}_{2}}\]has center at \[C\left( \dfrac{3}{4},-2 \right)\]and it passes through intersection of line \[A=\left( 1,1 \right)\].
Distance of point \[A\left( 1,1 \right)\]to \[C\left( \dfrac{3}{4},-2 \right)\]is radius.
By distance formula,
\[r=AC=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}\]
\[r=AC=\sqrt{{{\left( 1-\dfrac{3}{4} \right)}^{2}}+{{\left( 1+2 \right)}^{2}}}\]
\[=\sqrt{\dfrac{1}{16}+9}\]
We get radius \[=\sqrt{\dfrac{145}{16}}=\dfrac{\sqrt{145}}{4}\text{ units}\]
Now we know that, equation of circle with center \[\left( a,b \right)\]and radius \[r\]
\[={{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}\]
Here, we found the center \[\left( \dfrac{3}{4},-2 \right)\]and radius\[=\dfrac{\sqrt{145}}{4}\text{ units}\]
We get, equation of circle \[={{\left( x-\dfrac{3}{4} \right)}^{2}}+{{\left[ y-\left( -2 \right) \right]}^{2}}=\dfrac{145}{16}\]
\[=16{{x}^{2}}+16{{y}^{2}}-24x+64y=72\]
Therefore, final equation of circle is:
\[2\left( {{x}^{2}}+{{y}^{2}} \right)-3x+8y=9\]
Note:
Elimination method is also suitable to find the intersection of line. Students can also use the method of family of circles passing through a point and having a center with constraint.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

