Answer
Verified
484.2k+ views
Hint: In this question, we use the concept of the equation of Plane. Equation of plane passing through three non collinear points $\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right),\left( {{x_3},{y_3},{z_3}} \right)$ is
\[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Complete step-by-step answer:
Given, we have three points (2,3,4), (−3,5,1) and (4,−1,2).
When we have three non collinear points so the equation plane passing through three non collinear points is \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Now, $\left( {{x_1},{y_1},{z_1}} \right) = \left( {2,3,4} \right)$ , $\left( {{x_2},{y_2},{z_2}} \right) = \left( { - 3,5,1} \right)$ and $\left( {{x_3},{y_3},{z_3}} \right) = \left( {4, - 1,2} \right)$ .
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 3 - 2}&{5 - 3}&{1 - 4} \\
{4 - 2}&{ - 1 - 3}&{2 - 4}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 5}&2&{ - 3} \\
2&{ - 4}&{ - 2}
\end{array}} \right| = 0 \\
\]
Now solve the determinant,
$
\Rightarrow \left( {x - 2} \right)\left( { - 4 - 12} \right) - \left( {y - 3} \right)\left( {10 + 6} \right) + \left( {z - 4} \right)\left( {20 - 4} \right) = 0 \\
\Rightarrow \left( {x - 2} \right)\left( { - 16} \right) - \left( {y - 3} \right)\left( {16} \right) + \left( {z - 4} \right)\left( {16} \right) = 0 \\
$
Divide by 16 in above equation,
$
\Rightarrow \left( {x - 2} \right)\left( { - 1} \right) - \left( {y - 3} \right) + \left( {z - 4} \right) = 0 \\
\Rightarrow - x + 2 - y + 3 + z - 4 = 0 \\
\Rightarrow - x - y + z + 1 = 0 \\
\Rightarrow x + y - z - 1 = 0 \\
\Rightarrow x + y - z = 1 \\
$
So, the equation of the plane passing through the points (2,3,4), (−3,5,1) and (4,−1,2) is $x + y - z = 1$.
Note: Whenever we face such types of problems we can use two methods, one method we already mention above and in second method we can find vector equation of plane passing through three points with position vector $\mathop a\limits^ \to ,\mathop b\limits^ \to ,\mathop c\limits^ \to $ is $\left( {\mathop r\limits^ \to - \mathop a\limits^ \to } \right).\left[ {\left( {\mathop b\limits^ \to - \mathop a\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop a\limits^ \to } \right)} \right] = 0$ then put $\mathop r\limits^ \to = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge $ . So, we will get the required answer.
\[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Complete step-by-step answer:
Given, we have three points (2,3,4), (−3,5,1) and (4,−1,2).
When we have three non collinear points so the equation plane passing through three non collinear points is \[\left| {\begin{array}{*{20}{c}}
{x - {x_1}}&{y - {y_1}}&{z - {z_1}} \\
{{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}} \\
{{x_3} - {x_1}}&{{y_3} - {y_1}}&{{z_3} - {z_1}}
\end{array}} \right| = 0\]
Now, $\left( {{x_1},{y_1},{z_1}} \right) = \left( {2,3,4} \right)$ , $\left( {{x_2},{y_2},{z_2}} \right) = \left( { - 3,5,1} \right)$ and $\left( {{x_3},{y_3},{z_3}} \right) = \left( {4, - 1,2} \right)$ .
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 3 - 2}&{5 - 3}&{1 - 4} \\
{4 - 2}&{ - 1 - 3}&{2 - 4}
\end{array}} \right| = 0 \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
{x - 2}&{y - 3}&{z - 4} \\
{ - 5}&2&{ - 3} \\
2&{ - 4}&{ - 2}
\end{array}} \right| = 0 \\
\]
Now solve the determinant,
$
\Rightarrow \left( {x - 2} \right)\left( { - 4 - 12} \right) - \left( {y - 3} \right)\left( {10 + 6} \right) + \left( {z - 4} \right)\left( {20 - 4} \right) = 0 \\
\Rightarrow \left( {x - 2} \right)\left( { - 16} \right) - \left( {y - 3} \right)\left( {16} \right) + \left( {z - 4} \right)\left( {16} \right) = 0 \\
$
Divide by 16 in above equation,
$
\Rightarrow \left( {x - 2} \right)\left( { - 1} \right) - \left( {y - 3} \right) + \left( {z - 4} \right) = 0 \\
\Rightarrow - x + 2 - y + 3 + z - 4 = 0 \\
\Rightarrow - x - y + z + 1 = 0 \\
\Rightarrow x + y - z - 1 = 0 \\
\Rightarrow x + y - z = 1 \\
$
So, the equation of the plane passing through the points (2,3,4), (−3,5,1) and (4,−1,2) is $x + y - z = 1$.
Note: Whenever we face such types of problems we can use two methods, one method we already mention above and in second method we can find vector equation of plane passing through three points with position vector $\mathop a\limits^ \to ,\mathop b\limits^ \to ,\mathop c\limits^ \to $ is $\left( {\mathop r\limits^ \to - \mathop a\limits^ \to } \right).\left[ {\left( {\mathop b\limits^ \to - \mathop a\limits^ \to } \right) \times \left( {\mathop c\limits^ \to - \mathop a\limits^ \to } \right)} \right] = 0$ then put $\mathop r\limits^ \to = x\mathop i\limits^ \wedge + y\mathop j\limits^ \wedge + z\mathop k\limits^ \wedge $ . So, we will get the required answer.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE