Answer
Verified
432.3k+ views
Hint: Here in the question we are supposed to find the inverse trigonometric function to find the angle. This means the value in the bracket of trigonometric functions given here is an exact value of the function at a certain angle. So we have to find that angle in this question. For that we will see the range for Cosecant and then check for the principal values of trigonometric functions.
Complete step by step solution:
Let us suppose that $y = {\csc ^{ - 1}}( - 1)$ ----equation (1)
As we can see we have converted this into an equation by putting two expressions on both sides of the sign ‘equals to’ (=).
We can compare equation (1) with this equation: $y = \;f(x)$ -----equation (2)
From equation (1) & (2) we have: \[f(x) = {\csc ^{ - 1}}( - 1)\]
This means we can operate on equation (1) and shift the inverse trigonometric function on the LHS.
$ \Rightarrow \csc y = - 1$----equation (3)
We know that
\[\csc {90^ \circ } = 1\]
Since $\csc y$ is negative in equation (3) so we have to recall the signs of trigonometric functions in all the quadrants which is given in figure given below
From figure (a) we can certainly say that $\sin y$ is positive in 1 st & 2 nd quadrant and similarly $\csc y$ will be positive in the same because both are reciprocal ratios of a triangle i.e. $\sin y = \dfrac{1}{{\csc y}}$ which means it has to be negative in 3 rd and 4 th quadrants.
So the value of $\csc y$ in 3 rd quadrant:
${180^ \circ } + {90^ \circ } = \;{270^ \circ }$
Similarly, the value of $\cot y$ in 4 th quadrant:
${360^\circ } - {90^ \circ } = {270^ \circ }$
From this we can find the value of the equation (3)
\[
\Rightarrow \csc y = - \;1 \\
\Rightarrow \;y = \;{270^ \circ } \\
\]
To convert these degree values into radian values we have to multiply it by $\dfrac{\pi }{{180}}$i.e.
$
y = 270^\circ \\
y = 270 \times \dfrac{\pi }{{180}} \\
y = \dfrac{{3\pi }}{2} \\
$
But we have to find the exact value of the given inverse function for that we check for the range of inverse function cotangent i.e.
$
{\csc ^{ - 1}}(b) = \theta \;;\;where\;\theta \in \;[ - \dfrac{\pi }{2},\dfrac{\pi }{2}] - \{ 0\} $
From this we can say that
$
{\csc ^{ - 1}}( - 1) = \dfrac{{3\pi }}{2} = - \dfrac{\pi }{2}{\text{ because}} - \dfrac{\pi }{2} \in [ -
\dfrac{\pi }{2},\dfrac{\pi }{2}] - \{ 0\} \\
\Rightarrow y = - \dfrac{\pi }{2}\; \\
$
Note: We can find angles of trigonometric functions in the manner given above but the important part is to check the range of these inverse trigonometric functions in order to find the exact solution. Changing degree values of angles into radians is not necessary but angles in radians are more preferable at this level.
Complete step by step solution:
Let us suppose that $y = {\csc ^{ - 1}}( - 1)$ ----equation (1)
As we can see we have converted this into an equation by putting two expressions on both sides of the sign ‘equals to’ (=).
We can compare equation (1) with this equation: $y = \;f(x)$ -----equation (2)
From equation (1) & (2) we have: \[f(x) = {\csc ^{ - 1}}( - 1)\]
This means we can operate on equation (1) and shift the inverse trigonometric function on the LHS.
$ \Rightarrow \csc y = - 1$----equation (3)
We know that
\[\csc {90^ \circ } = 1\]
Since $\csc y$ is negative in equation (3) so we have to recall the signs of trigonometric functions in all the quadrants which is given in figure given below
From figure (a) we can certainly say that $\sin y$ is positive in 1 st & 2 nd quadrant and similarly $\csc y$ will be positive in the same because both are reciprocal ratios of a triangle i.e. $\sin y = \dfrac{1}{{\csc y}}$ which means it has to be negative in 3 rd and 4 th quadrants.
So the value of $\csc y$ in 3 rd quadrant:
${180^ \circ } + {90^ \circ } = \;{270^ \circ }$
Similarly, the value of $\cot y$ in 4 th quadrant:
${360^\circ } - {90^ \circ } = {270^ \circ }$
From this we can find the value of the equation (3)
\[
\Rightarrow \csc y = - \;1 \\
\Rightarrow \;y = \;{270^ \circ } \\
\]
To convert these degree values into radian values we have to multiply it by $\dfrac{\pi }{{180}}$i.e.
$
y = 270^\circ \\
y = 270 \times \dfrac{\pi }{{180}} \\
y = \dfrac{{3\pi }}{2} \\
$
But we have to find the exact value of the given inverse function for that we check for the range of inverse function cotangent i.e.
$
{\csc ^{ - 1}}(b) = \theta \;;\;where\;\theta \in \;[ - \dfrac{\pi }{2},\dfrac{\pi }{2}] - \{ 0\} $
From this we can say that
$
{\csc ^{ - 1}}( - 1) = \dfrac{{3\pi }}{2} = - \dfrac{\pi }{2}{\text{ because}} - \dfrac{\pi }{2} \in [ -
\dfrac{\pi }{2},\dfrac{\pi }{2}] - \{ 0\} \\
\Rightarrow y = - \dfrac{\pi }{2}\; \\
$
Note: We can find angles of trigonometric functions in the manner given above but the important part is to check the range of these inverse trigonometric functions in order to find the exact solution. Changing degree values of angles into radians is not necessary but angles in radians are more preferable at this level.
Recently Updated Pages
Locus of all the points in a plane on which the moment class 11 phy sec 1 JEE_Main
A pulley is hinged at the centre and a massless thread class 11 physics JEE_Main
If sum of all the solution of equation 8cos xleft cos class 11 maths JEE_Main
The heat of combustion of carbon and carbon monoxide class 11 chemistry JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE