Answer
Verified
430.2k+ views
Hint:In order to find the solution to this question , we need to first understand the mathematical concept of the geometric sequence . A Geometric sequence somewhere also called a geometric progression .
It is actually a sequence formed of non – zero numbers such that there in the sequence
Each term subsequent to the first term goes to the next by always multiplying by the same , fixed non – zero number called the common ratio and denoted by ‘ r ‘ . If there are n terms in the sequence then the first term is always denoted by ‘ ${a_1}$ ’ .
Complete Step by step solution :
According to the given question , our first term is ${a_1} = 4$. Also the common ratio as described in the hint part can be calculated by dividing any number or term from the sequence by the term preceding it .
Now The first term is ${a_1} = 4$ and another given term is 324 positioned at fifth place that can be expressed as the term in $a{r^4}$ . So , $a{r^4} = 324$. We can also determine the position of the term by keeping in mind that $a$is the first term , $ar$is the second term , $a{r^2}$is the third term and so on .
So , the common ratio , ‘ r ‘ can be calculated as –
$\dfrac{{a{r^4}}}{a}$= $\dfrac{{324}}{4}$
So here , ${r^4} = 81$
We can easily see that 81 comes when 3 is multiplied four times that is ${3^4} = 81$, comparing this with
${r^4} = 81$ , we get the common ratio , ${r^{}} = \pm 3$ .
So , the common ratio can be 3 and -3 .
Accordingly we will make the geometric sequence using the common ratio as 3 and as well as -3 .
Hence , the geometric sequence generated is \[\{ 4,12,36,108,324\} \]o r \[\{ 4, - 12, - 36, - 108, -
324\} \].
So, the middle terms are \[\{ 12,36,108\} \]or \[\{ - 12, - 36, - 108\} \].
Note : If the same number is not multiplied to each number in the series, then there is no common ratio.
Alternatively , to find the nth term of the sequence is determined by the formula = ${a_n} = a{r^{n -
1}}$.
If the common ratio is determined to be a complex number then also geometric series is said to be valid .
It is actually a sequence formed of non – zero numbers such that there in the sequence
Each term subsequent to the first term goes to the next by always multiplying by the same , fixed non – zero number called the common ratio and denoted by ‘ r ‘ . If there are n terms in the sequence then the first term is always denoted by ‘ ${a_1}$ ’ .
Complete Step by step solution :
According to the given question , our first term is ${a_1} = 4$. Also the common ratio as described in the hint part can be calculated by dividing any number or term from the sequence by the term preceding it .
Now The first term is ${a_1} = 4$ and another given term is 324 positioned at fifth place that can be expressed as the term in $a{r^4}$ . So , $a{r^4} = 324$. We can also determine the position of the term by keeping in mind that $a$is the first term , $ar$is the second term , $a{r^2}$is the third term and so on .
So , the common ratio , ‘ r ‘ can be calculated as –
$\dfrac{{a{r^4}}}{a}$= $\dfrac{{324}}{4}$
So here , ${r^4} = 81$
We can easily see that 81 comes when 3 is multiplied four times that is ${3^4} = 81$, comparing this with
${r^4} = 81$ , we get the common ratio , ${r^{}} = \pm 3$ .
So , the common ratio can be 3 and -3 .
Accordingly we will make the geometric sequence using the common ratio as 3 and as well as -3 .
Hence , the geometric sequence generated is \[\{ 4,12,36,108,324\} \]o r \[\{ 4, - 12, - 36, - 108, -
324\} \].
So, the middle terms are \[\{ 12,36,108\} \]or \[\{ - 12, - 36, - 108\} \].
Note : If the same number is not multiplied to each number in the series, then there is no common ratio.
Alternatively , to find the nth term of the sequence is determined by the formula = ${a_n} = a{r^{n -
1}}$.
If the common ratio is determined to be a complex number then also geometric series is said to be valid .
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers