Answer
Verified
455.1k+ views
Hint: Divide the sphere into thin spherical shells and find the force acting on the particle lying inside the sphere by a thin spherical shell and integrate within the suitable limits.
Complete step by step solution:
Let M be the mass of the uniform spherical layer of matter and m be the mass of the particle lying inside it at a distance of r from the centre. Let the sphere be divided into thin spherical shells of density $\sigma $ per unit area. Force acting on the particle by a thin spherical shell of radius R is given by
\[dF = \dfrac{{GmdM}}{{{s^2}}}\cos \alpha \]
Mass =\[dM = \sigma 2\pi R\sin \theta Rd\theta \]
The force from the entire spherical shell is given by
\[F = 2\pi G\sigma m{R^2}\int\limits_{\theta = 0}^\pi {\dfrac{{\cos \alpha \sin \theta d\theta }}{{{s^2}}}} \] -----(1)
In order to find the value of the integral we need to express in terms of. To do so we use cosine formula. Using the cosine law, we have ${s^2} = {R^2} + {r^2}\theta - 2Rr\cos \theta $
Differentiating both sides, we get
$2sds = 2Rr\sin \theta d\theta $
$ \Rightarrow \sin \theta d\theta = \dfrac{{sds}}{{Rr}}$ ------------(2)
Now using the cosine formula for the external angle
\[{R^2} = {r^2} + {s^2} - 2rs\cos \alpha \]
\[\cos \alpha = \dfrac{{{r^2} + {s^2} - {R^2}}}{{2rs}}\] ------------(3)
\[\cos \alpha = \dfrac{{{r^2} + {s^2} - {R^2}}}{{2rs}}\] ------------(3)
Now, put the values of equations (2) and (3) in equation (1). Also, for\[\theta = 0,s = R - r\]and for \[\theta = \pi ,s = r + R\]
Now (1) reduces to
\[F = - 2\pi G\sigma m{R^2}\int\limits_{s = R - r}^{s = R + r} {\dfrac{{\left( {{r^2} + {s^2} - {R^2}} \right)sds}}{{{s^2}.2rs.Rr}}} \]
\[ \Rightarrow F = \dfrac{{ - \pi G\sigma m{R^2}}}{{{r^2}}}\int\limits_{s = R - r}^{s = R + r} {\left( {1 + \dfrac{{{r^2} - {R^2}}}{{{s^2}}}} \right)ds} \]
Using the area density expression \[ \Rightarrow \sigma = \dfrac{M}{{4\pi {R^2}}}\] the above equation reduces to
\[F = \dfrac{{ - GmM}}{{4R{r^2}}}\int\limits_{s = R - r}^{s = R + r} {\left( {1 + \dfrac{{{r^2} - {R^2}}}{{{s^2}}}} \right)ds} \]
\[ \Rightarrow F = \dfrac{{ - GmM}}{{4R{r^2}}}\left[ {s - \left( {{r^2} - {R^2}} \right)\dfrac{1}{s}} \right]_{s = R - r}^{s = R + r}\]
\[ \Rightarrow F = \dfrac{{ - GmM}}{{4R{r^2}}}\left[ {\left( {R + r} \right) - \left( {R - r} \right) - \left( {{r^2} - {R^2}} \right)\left( {\dfrac{1}{{R + r}} - \dfrac{1}{{R - r}}} \right)} \right]\]
\[ \Rightarrow F = \dfrac{{ - GmM}}{{4R{r^2}}}\left[ {\left( {2r} \right) + \left( { - 2r} \right)} \right] \Rightarrow F = 0\]
Thus the algebraic sum of the forces acting on the particle lying inside a sphere is zero.
Note: The gravitational force acting on a particle lying inside a spherical layer of matter is always zero. This is true for all particles lying inside a sphere.
Complete step by step solution:
Let M be the mass of the uniform spherical layer of matter and m be the mass of the particle lying inside it at a distance of r from the centre. Let the sphere be divided into thin spherical shells of density $\sigma $ per unit area. Force acting on the particle by a thin spherical shell of radius R is given by
\[dF = \dfrac{{GmdM}}{{{s^2}}}\cos \alpha \]
Mass =\[dM = \sigma 2\pi R\sin \theta Rd\theta \]
The force from the entire spherical shell is given by
\[F = 2\pi G\sigma m{R^2}\int\limits_{\theta = 0}^\pi {\dfrac{{\cos \alpha \sin \theta d\theta }}{{{s^2}}}} \] -----(1)
In order to find the value of the integral we need to express in terms of. To do so we use cosine formula. Using the cosine law, we have ${s^2} = {R^2} + {r^2}\theta - 2Rr\cos \theta $
Differentiating both sides, we get
$2sds = 2Rr\sin \theta d\theta $
$ \Rightarrow \sin \theta d\theta = \dfrac{{sds}}{{Rr}}$ ------------(2)
Now using the cosine formula for the external angle
\[{R^2} = {r^2} + {s^2} - 2rs\cos \alpha \]
\[\cos \alpha = \dfrac{{{r^2} + {s^2} - {R^2}}}{{2rs}}\] ------------(3)
\[\cos \alpha = \dfrac{{{r^2} + {s^2} - {R^2}}}{{2rs}}\] ------------(3)
Now, put the values of equations (2) and (3) in equation (1). Also, for\[\theta = 0,s = R - r\]and for \[\theta = \pi ,s = r + R\]
Now (1) reduces to
\[F = - 2\pi G\sigma m{R^2}\int\limits_{s = R - r}^{s = R + r} {\dfrac{{\left( {{r^2} + {s^2} - {R^2}} \right)sds}}{{{s^2}.2rs.Rr}}} \]
\[ \Rightarrow F = \dfrac{{ - \pi G\sigma m{R^2}}}{{{r^2}}}\int\limits_{s = R - r}^{s = R + r} {\left( {1 + \dfrac{{{r^2} - {R^2}}}{{{s^2}}}} \right)ds} \]
Using the area density expression \[ \Rightarrow \sigma = \dfrac{M}{{4\pi {R^2}}}\] the above equation reduces to
\[F = \dfrac{{ - GmM}}{{4R{r^2}}}\int\limits_{s = R - r}^{s = R + r} {\left( {1 + \dfrac{{{r^2} - {R^2}}}{{{s^2}}}} \right)ds} \]
\[ \Rightarrow F = \dfrac{{ - GmM}}{{4R{r^2}}}\left[ {s - \left( {{r^2} - {R^2}} \right)\dfrac{1}{s}} \right]_{s = R - r}^{s = R + r}\]
\[ \Rightarrow F = \dfrac{{ - GmM}}{{4R{r^2}}}\left[ {\left( {R + r} \right) - \left( {R - r} \right) - \left( {{r^2} - {R^2}} \right)\left( {\dfrac{1}{{R + r}} - \dfrac{1}{{R - r}}} \right)} \right]\]
\[ \Rightarrow F = \dfrac{{ - GmM}}{{4R{r^2}}}\left[ {\left( {2r} \right) + \left( { - 2r} \right)} \right] \Rightarrow F = 0\]
Thus the algebraic sum of the forces acting on the particle lying inside a sphere is zero.
Note: The gravitational force acting on a particle lying inside a spherical layer of matter is always zero. This is true for all particles lying inside a sphere.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths