
Find the image of the point (3,8) about the line x+3y = 7 assuming the line to be a plane mirror.
Answer
612.6k+ views
Hint: Assume the coordinates of the reflection point be B(x,y). Use the fact that the image distance is equal to object distance. Use the fact that the line joining object to the image is orthogonal to the reflecting surface. Hence form two equations in x and y. Solve for x and y. Hence find coordinates of B.
Alternatively, use the fact that the image of $A\left( {{x}_{1}},{{y}_{1}} \right)$ in the line mirror $ax+by+c=0$ is given by
$\dfrac{h-{{x}_{1}}}{a}=\dfrac{k-{{y}_{1}}}{b}=-2\dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{{{a}^{2}}+{{b}^{2}}}$, where h,k are the coordinates of the image.
Complete step-by-step solution -
Let the coordinates of the image be B(x,y) and let the line AB intersect the line mirror at D.
Since image distance is equal to object distance, we have AD = DB
Hence $\dfrac{AD}{DB}=1$
Hence D is the midpoint of AB.
Now we know that coordinates of the midpoint of AB, where $A\equiv \left( {{x}_{1}},{{y}_{1}} \right)$ and $B\equiv \left( {{x}_{2}},{{y}_{2}} \right)$, are given by
$\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{ y }_{2}}}{2} \right)$
Here ${{x}_{1}}=h,{{x}_{2}}=3,{{y}_{1}}=k$ and ${{y}_{2}}=8$
Hence $D\equiv \left( \dfrac{h+3}{2},\dfrac{k+8}{2} \right)$
Since D lies on the line mirror, we have
$\dfrac{h+3}{2}+3\left( \dfrac{k+8}{2} \right)=7\Rightarrow h+3k+13=0\text{ (i)}$.
Also, AB and the line mirror are perpendicular to each other.
Slope of AB $=\dfrac{k-8}{h-3}$
Slope of mirror $=\dfrac{-1}{3}$
We know that if the slopes of two perpendicular lines are ${{m}_{1}}$ and ${{m}_{2}}$ then ${{m}_{1}}{{m}_{2}}=-1$
Hence we have
$\begin{align}
& \dfrac{k-8}{h-3}\left( \dfrac{-1}{3} \right)=-1 \\
& \Rightarrow \dfrac{k-8}{h-3}=3 \\
& \Rightarrow k=3h-1\text{ (ii)} \\
\end{align}$
Substituting the value of k from equation (ii) in equation (i), we get
$\begin{align}
& h+3\left( 3h-1 \right)+13=0 \\
& \Rightarrow 10h+10=0 \\
& \Rightarrow h=-1 \\
\end{align}$
Substituting the value of h in equation (ii), we get
$k=3\left( -1 \right)-1=-4$
Hence the coordinates of the image are given by (-1,-4).
Note: Alternative Solution:
We know that the image of $A\left( {{x}_{1}},{{y}_{1}} \right)$ in the line mirror $ax+by+c=0$ is given by
$\dfrac{h-{{x}_{1}}}{a}=\dfrac{k-{{y}_{1}}}{b}=-2\dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{{{a}^{2}}+{{b}^{2}}}$, where h,k are the coordinates of the image.
Here $a=1,b=3,c=-7,{{x}_{1}}=3$ and ${{y}_{1}}=8$
Hence we have
$\begin{align}
& \dfrac{h-3}{1}=\dfrac{k-8}{3}=-2\left( \dfrac{3+3\left( 8 \right)-7}{{{1}^{2}}+{{3}^{2}}} \right) \\
& \Rightarrow h-3=\dfrac{k-8}{3}=-4 \\
\end{align}$
Hence $h=-4+3=-1$ and $k=8-12=-4$
Hence the coordinates of the image are given by
(-1,-4), which is the same as obtained above.
Alternatively, use the fact that the image of $A\left( {{x}_{1}},{{y}_{1}} \right)$ in the line mirror $ax+by+c=0$ is given by
$\dfrac{h-{{x}_{1}}}{a}=\dfrac{k-{{y}_{1}}}{b}=-2\dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{{{a}^{2}}+{{b}^{2}}}$, where h,k are the coordinates of the image.
Complete step-by-step solution -
Let the coordinates of the image be B(x,y) and let the line AB intersect the line mirror at D.
Since image distance is equal to object distance, we have AD = DB
Hence $\dfrac{AD}{DB}=1$
Hence D is the midpoint of AB.
Now we know that coordinates of the midpoint of AB, where $A\equiv \left( {{x}_{1}},{{y}_{1}} \right)$ and $B\equiv \left( {{x}_{2}},{{y}_{2}} \right)$, are given by
$\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{ y }_{2}}}{2} \right)$
Here ${{x}_{1}}=h,{{x}_{2}}=3,{{y}_{1}}=k$ and ${{y}_{2}}=8$
Hence $D\equiv \left( \dfrac{h+3}{2},\dfrac{k+8}{2} \right)$
Since D lies on the line mirror, we have
$\dfrac{h+3}{2}+3\left( \dfrac{k+8}{2} \right)=7\Rightarrow h+3k+13=0\text{ (i)}$.
Also, AB and the line mirror are perpendicular to each other.
Slope of AB $=\dfrac{k-8}{h-3}$
Slope of mirror $=\dfrac{-1}{3}$
We know that if the slopes of two perpendicular lines are ${{m}_{1}}$ and ${{m}_{2}}$ then ${{m}_{1}}{{m}_{2}}=-1$
Hence we have
$\begin{align}
& \dfrac{k-8}{h-3}\left( \dfrac{-1}{3} \right)=-1 \\
& \Rightarrow \dfrac{k-8}{h-3}=3 \\
& \Rightarrow k=3h-1\text{ (ii)} \\
\end{align}$
Substituting the value of k from equation (ii) in equation (i), we get
$\begin{align}
& h+3\left( 3h-1 \right)+13=0 \\
& \Rightarrow 10h+10=0 \\
& \Rightarrow h=-1 \\
\end{align}$
Substituting the value of h in equation (ii), we get
$k=3\left( -1 \right)-1=-4$
Hence the coordinates of the image are given by (-1,-4).
Note: Alternative Solution:
We know that the image of $A\left( {{x}_{1}},{{y}_{1}} \right)$ in the line mirror $ax+by+c=0$ is given by
$\dfrac{h-{{x}_{1}}}{a}=\dfrac{k-{{y}_{1}}}{b}=-2\dfrac{a{{x}_{1}}+b{{y}_{1}}+c}{{{a}^{2}}+{{b}^{2}}}$, where h,k are the coordinates of the image.
Here $a=1,b=3,c=-7,{{x}_{1}}=3$ and ${{y}_{1}}=8$
Hence we have
$\begin{align}
& \dfrac{h-3}{1}=\dfrac{k-8}{3}=-2\left( \dfrac{3+3\left( 8 \right)-7}{{{1}^{2}}+{{3}^{2}}} \right) \\
& \Rightarrow h-3=\dfrac{k-8}{3}=-4 \\
\end{align}$
Hence $h=-4+3=-1$ and $k=8-12=-4$
Hence the coordinates of the image are given by
(-1,-4), which is the same as obtained above.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

