Answer
Verified
431.1k+ views
Hint: Integrating a function needs to solve the equation according to the basic formulae used in integration. The general formulae for integration for any variable and integrating with respect to that variable says that the power of the variable will increase by one and the final power on the variable will be multiplied in the denominator in the result obtained.
Formulae Used:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}}
\right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \]
\[ \Rightarrow \]\[\int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{{2a}}\ln |\dfrac{{x - a}}{{x + a}}|} \]
Complete step by step solution:
The given question is \[\int {\dfrac{{dx}}{{{x^4} + 1}}} \]
Here we have to multiply and divide by some variable and some constant numbers and then modify the equation to move further and then after using standard formulae we can get our final integral, on solving we get:
\[
\Rightarrow \int {\dfrac{{dx}}{{{x^4} + 1}}} \\
\Rightarrow \smallint \dfrac{1}{{1 + {x^4}}}{\text{ }}dx \\
\Rightarrow \int {\dfrac{{\dfrac{1}{{{x^2}}}}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\dfrac{2}{{{x^2}}}}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right) - \left( {1 -
\dfrac{1}{{{x^2}}}} \right)}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right)dx}}{{\dfrac{{1 +
{x^4}}}{{{x^2}}}}}} - \dfrac{1}{2}\int {\dfrac{{\left( {1 - \dfrac{1}{{{x^2}}}} \right)}}{{\dfrac{{1 +
{x^4}}}{{{x^2}}}}}} dx \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right)dx}}{{{x^2} +
\dfrac{1}{{{x^2}}} - 2 + 2}}} - \dfrac{1}{2}\int
\dfrac{{\left( {1 - \dfrac{1}{{{x^2}}}} \right)dx}}{{{x^2} + \dfrac{1}{{{x^2}}} - 2 + 2}} \\
\\
\\
\]
\[
\Rightarrow \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x -
\dfrac{1}{x}} \right)}^2} + 2}}} - \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}}
\right)}}{{{{\left( {x + \dfrac{1}{x}} \right)}^2} - 2}}} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x -
\dfrac{1}{x}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}} - \dfrac{1}{2}\int {\dfrac{{d\left( {1 +
\dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x - \dfrac{1}{x}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}}
\\
u\sin g\,s\tan dard\,formulae\,:\,\int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left(
{\dfrac{x}{a}} \right)\,and\,} \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{{2a}}\ln |\dfrac{{x - a}}{{x +
a}}|} \\
\Rightarrow \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{x -
\dfrac{1}{x}}}{{\sqrt 2 }}} \right) - \dfrac{1}{2} \times \dfrac{1}{{2\sqrt 2 }}\ln |\dfrac{{x + \dfrac{1}{x}
- \sqrt 2 }}{{x + \dfrac{1}{x} + \sqrt 2 }}| + C \\
\Rightarrow \dfrac{1}{{2\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{x - 1}}{{x\sqrt 2 }}} \right) -
\dfrac{1}{{4\sqrt 2 }}\ln |\dfrac{{x - x\sqrt 2 + 1}}{{x + x\sqrt 2 + 1}}| + C \\
\]
This is our final required integral we are seeking for.
Additional Information:
In the above question we have multiplied and divided certain variables and constants in the equation, and these variables and constants need to be divided for moving further, if you practice more and more then only you will get to how to adjust the equation as per our need.
Note: Finding integral of a function becomes little hard when the question need any specific formulae to go through, in this question also you have to do the steps same as they are done otherwise you will get to the result, integration is all about remembering the process for a particular kind of question, and you have to solve the question as per the question needs.
Formulae Used:
\[ \Rightarrow \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left( {\dfrac{x}{a}}
\right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \]
\[ \Rightarrow \]\[\int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{{2a}}\ln |\dfrac{{x - a}}{{x + a}}|} \]
Complete step by step solution:
The given question is \[\int {\dfrac{{dx}}{{{x^4} + 1}}} \]
Here we have to multiply and divide by some variable and some constant numbers and then modify the equation to move further and then after using standard formulae we can get our final integral, on solving we get:
\[
\Rightarrow \int {\dfrac{{dx}}{{{x^4} + 1}}} \\
\Rightarrow \smallint \dfrac{1}{{1 + {x^4}}}{\text{ }}dx \\
\Rightarrow \int {\dfrac{{\dfrac{1}{{{x^2}}}}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\dfrac{2}{{{x^2}}}}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right) - \left( {1 -
\dfrac{1}{{{x^2}}}} \right)}}{{\dfrac{{1 + {x^4}}}{{{x^2}}}}}dx} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right)dx}}{{\dfrac{{1 +
{x^4}}}{{{x^2}}}}}} - \dfrac{1}{2}\int {\dfrac{{\left( {1 - \dfrac{1}{{{x^2}}}} \right)}}{{\dfrac{{1 +
{x^4}}}{{{x^2}}}}}} dx \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{\left( {1 + \dfrac{1}{{{x^2}}}} \right)dx}}{{{x^2} +
\dfrac{1}{{{x^2}}} - 2 + 2}}} - \dfrac{1}{2}\int
\dfrac{{\left( {1 - \dfrac{1}{{{x^2}}}} \right)dx}}{{{x^2} + \dfrac{1}{{{x^2}}} - 2 + 2}} \\
\\
\\
\]
\[
\Rightarrow \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x -
\dfrac{1}{x}} \right)}^2} + 2}}} - \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}}
\right)}}{{{{\left( {x + \dfrac{1}{x}} \right)}^2} - 2}}} \\
\Rightarrow \dfrac{1}{2}\int {\dfrac{{d\left( {1 + \dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x -
\dfrac{1}{x}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}} - \dfrac{1}{2}\int {\dfrac{{d\left( {1 +
\dfrac{1}{{{x^2}}}} \right)}}{{{{\left( {x - \dfrac{1}{x}} \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}}}}
\\
u\sin g\,s\tan dard\,formulae\,:\,\int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{a}{{\tan }^{ - 1}}\left(
{\dfrac{x}{a}} \right)\,and\,} \int {\dfrac{{dx}}{{{x^2} + {a^2}}} = \dfrac{1}{{2a}}\ln |\dfrac{{x - a}}{{x +
a}}|} \\
\Rightarrow \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{x -
\dfrac{1}{x}}}{{\sqrt 2 }}} \right) - \dfrac{1}{2} \times \dfrac{1}{{2\sqrt 2 }}\ln |\dfrac{{x + \dfrac{1}{x}
- \sqrt 2 }}{{x + \dfrac{1}{x} + \sqrt 2 }}| + C \\
\Rightarrow \dfrac{1}{{2\sqrt 2 }}{\tan ^{ - 1}}\left( {\dfrac{{x - 1}}{{x\sqrt 2 }}} \right) -
\dfrac{1}{{4\sqrt 2 }}\ln |\dfrac{{x - x\sqrt 2 + 1}}{{x + x\sqrt 2 + 1}}| + C \\
\]
This is our final required integral we are seeking for.
Additional Information:
In the above question we have multiplied and divided certain variables and constants in the equation, and these variables and constants need to be divided for moving further, if you practice more and more then only you will get to how to adjust the equation as per our need.
Note: Finding integral of a function becomes little hard when the question need any specific formulae to go through, in this question also you have to do the steps same as they are done otherwise you will get to the result, integration is all about remembering the process for a particular kind of question, and you have to solve the question as per the question needs.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE