Answer
Verified
459k+ views
Hint: The inverse of the square matrix exists, where the determinant of the matrix does not equal to zero i.e. the non-singular. It follows the property - ${{A}^{-1}}A={{A}^{-1}}A=I$ where I is the identity matrix. By using elementary column transformation, you swap (interchanged) the columns and multiply the column with non-zero constant and add a multiple of one column to another column.
Complete step-by-step answer:
To find the inverse, first find the determinant of A
Determinant is an element that determines or identifies the nature or conditions of an outcome. It is denoted by det(A), det A or $\left| A \right|$
$\Rightarrow \left| A \right|=\left| \begin{matrix}
1 & 0 & 3 \\
0 & 2 & 3 \\
1 & 2 & 1 \\
\end{matrix} \right|$
The determinant of A is the product of the diagonal entries of the row echelon and the times of a factor $\pm 1$.
Now,
$\Rightarrow \left| A \right|=1[(2)(1)-(2)(3)]-0[(0)(1)-(1)(3)]+1[(0)(2)-(2)(1)]$
Simplify the left hand side of the equation –
Here, the middle term is equal to zero, as zero multiplied with anything becomes zero.
$\begin{align}
\Rightarrow & \left| A \right|=1[2-6]-0+1[-2] \\
& \left| A \right|=-4-2 \\
\end{align}$
Here, both the terms are negative so according to the property, minus and minus do plus and sign of minus.
$\begin{align}
\Rightarrow & \left| A \right|=-6 \\
\Rightarrow & \left| A \right|\ne 0 \\
\end{align}$
The determinant is not equal to zero, therefore, the inverse exists.
Now, consider ${{A}^{-1}}A=I$
Place, the values of the given matrix A in the above equation
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now, subtract column one from column third ${{C}_{3}}-{{C}_{1}}$
We get,
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 2 & 3 \\
1 & 2 & 0 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now interchange column second and third,
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 3 & 2 \\
1 & 0 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right]$
Now, subtract column third from second –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
1 & -2 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right]$
Now, multiply column second with two and subtract it from column third –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & -2 & 6 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 2 \\
0 & -1 & 3 \\
0 & 1 & -2 \\
\end{matrix} \right]$
Divide column third by six, $(\dfrac{{{C}_{3}}}{6})$
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & -2 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & \dfrac{1}{3} \\
0 & -1 & \dfrac{1}{2} \\
0 & 1 & \dfrac{1}{-3} \\
\end{matrix} \right]$
Now, use ${{C}_{1}}-{{C}_{3}}\text{ and }{{\text{C}}_{2}}+2{{C}_{3}}$ operations –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{2}{3} & \dfrac{-1}{3} & \dfrac{1}{3} \\
\dfrac{-1}{2} & 0 & \dfrac{1}{2} \\
\dfrac{1}{3} & \dfrac{1}{3} & \dfrac{-1}{3} \\
\end{matrix} \right]$
Now, take $\dfrac{1}{6}$ common from the right hand side of the equation –
${{A}^{-1}}=\dfrac{1}{6}\left[ \begin{matrix}
4 & -2 & 2 \\
-3 & 0 & 3 \\
2 & 2 & -2 \\
\end{matrix} \right]$
This is the required solution.
Note: Always read the given instructions twice, as the inverse of any matrix can be calculated by the row and column transformation. Also it can be calculated by the adjoint method. So, apply accordingly.
Complete step-by-step answer:
To find the inverse, first find the determinant of A
Determinant is an element that determines or identifies the nature or conditions of an outcome. It is denoted by det(A), det A or $\left| A \right|$
$\Rightarrow \left| A \right|=\left| \begin{matrix}
1 & 0 & 3 \\
0 & 2 & 3 \\
1 & 2 & 1 \\
\end{matrix} \right|$
The determinant of A is the product of the diagonal entries of the row echelon and the times of a factor $\pm 1$.
Now,
$\Rightarrow \left| A \right|=1[(2)(1)-(2)(3)]-0[(0)(1)-(1)(3)]+1[(0)(2)-(2)(1)]$
Simplify the left hand side of the equation –
Here, the middle term is equal to zero, as zero multiplied with anything becomes zero.
$\begin{align}
\Rightarrow & \left| A \right|=1[2-6]-0+1[-2] \\
& \left| A \right|=-4-2 \\
\end{align}$
Here, both the terms are negative so according to the property, minus and minus do plus and sign of minus.
$\begin{align}
\Rightarrow & \left| A \right|=-6 \\
\Rightarrow & \left| A \right|\ne 0 \\
\end{align}$
The determinant is not equal to zero, therefore, the inverse exists.
Now, consider ${{A}^{-1}}A=I$
Place, the values of the given matrix A in the above equation
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 1 \\
0 & 2 & 3 \\
1 & 2 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now, subtract column one from column third ${{C}_{3}}-{{C}_{1}}$
We get,
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 2 & 3 \\
1 & 2 & 0 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now interchange column second and third,
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 3 & 2 \\
1 & 0 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right]$
Now, subtract column third from second –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
1 & -2 & 2 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 0 \\
0 & -1 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right]$
Now, multiply column second with two and subtract it from column third –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & -2 & 6 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & 2 \\
0 & -1 & 3 \\
0 & 1 & -2 \\
\end{matrix} \right]$
Divide column third by six, $(\dfrac{{{C}_{3}}}{6})$
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & -2 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
1 & -1 & \dfrac{1}{3} \\
0 & -1 & \dfrac{1}{2} \\
0 & 1 & \dfrac{1}{-3} \\
\end{matrix} \right]$
Now, use ${{C}_{1}}-{{C}_{3}}\text{ and }{{\text{C}}_{2}}+2{{C}_{3}}$ operations –
$\Rightarrow {{A}^{-1}}\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]=\left[ \begin{matrix}
\dfrac{2}{3} & \dfrac{-1}{3} & \dfrac{1}{3} \\
\dfrac{-1}{2} & 0 & \dfrac{1}{2} \\
\dfrac{1}{3} & \dfrac{1}{3} & \dfrac{-1}{3} \\
\end{matrix} \right]$
Now, take $\dfrac{1}{6}$ common from the right hand side of the equation –
${{A}^{-1}}=\dfrac{1}{6}\left[ \begin{matrix}
4 & -2 & 2 \\
-3 & 0 & 3 \\
2 & 2 & -2 \\
\end{matrix} \right]$
This is the required solution.
Note: Always read the given instructions twice, as the inverse of any matrix can be calculated by the row and column transformation. Also it can be calculated by the adjoint method. So, apply accordingly.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE