
Find the inverse of matrix $\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]$ by elementary row transformation.
Answer
481.8k+ views
Hint: In this question, we will first find the determinant of the matrix to check if its inverse exists. If the determinant is non-zero, only then will we proceed further. After that, we will use elementary row transformations to find the inverse of the matrix. We will use various operations step by step to reach our answer.
Complete step-by-step solution
We are given the matrix $A=\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]$ . Let us find the determinant of the matrix.
$\begin{align}
& \left| A \right|=1\left( 0-2 \right)-2\left( 3-4 \right)+1\left( -1-0 \right) \\
& =-2+2-1 \\
& =-1\ne 0 \\
\end{align}$
Hence, the inverse of the $A$ matrix exists.
Now as we know $A{{A}^{-1}}=I$, so let us put the value of $A$ and $I$ , where $I$is $3\times 3$ identity matrix.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now we apply various row transformations to make $A$ as $I$ and hence find our answer.
${{R}_{1}}$ will represent row $1$.
${{R}_{2}}$ will represent row $2$.
${{R}_{3}}$ will represent row $3$.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Operating of ${{R}_{2}}$and ${{R}_{3}}$ simultaneously, using operations ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$ and ${{R}_{3}}\to {{R}_{3}}-2{{R}_{1}}$, we get –
$\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & -3 & -5 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1 \\
\end{matrix} \right]$
Operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to {{R}_{3}}+\dfrac{3}{2}{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & -\dfrac{1}{2} \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
-\dfrac{1}{2} & \dfrac{3}{2} & 1 \\
\end{matrix} \right]\]
Again operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to \dfrac{{{R}_{3}}}{-\dfrac{1}{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Now operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}-{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & -2 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
0 & -1 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}+2{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to \dfrac{{{R}_{2}}}{2}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & \dfrac{3}{2} \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
\dfrac{1}{2} & \dfrac{1}{2} & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
At last operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to {{R}_{2}}-\dfrac{3}{2}{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Hence, we have got \[I{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Since,\[IA=AI=A\], therefore, \[{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\], which is our required answer.
Note: Students should know that while using elementary transformations, if we are using row transformation, then we have to use rows only. We cannot use column transformation in between. Also, we are not allowed to alter any row, for example, we cannot write ${{R}_{2}}\to {{R}_{1}}+{{R}_{3}}$. Also, the row which is to be transformed should come first in the equation, meaning we cannot write ${{R}_{2}}\to {{R}_{1}}-{{R}_{2}}$. We can only write ${{R}_{2}}\to {{R}_{2}}-{{R}_{1}}$.
Complete step-by-step solution
We are given the matrix $A=\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]$ . Let us find the determinant of the matrix.
$\begin{align}
& \left| A \right|=1\left( 0-2 \right)-2\left( 3-4 \right)+1\left( -1-0 \right) \\
& =-2+2-1 \\
& =-1\ne 0 \\
\end{align}$
Hence, the inverse of the $A$ matrix exists.
Now as we know $A{{A}^{-1}}=I$, so let us put the value of $A$ and $I$ , where $I$is $3\times 3$ identity matrix.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now we apply various row transformations to make $A$ as $I$ and hence find our answer.
${{R}_{1}}$ will represent row $1$.
${{R}_{2}}$ will represent row $2$.
${{R}_{3}}$ will represent row $3$.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Operating of ${{R}_{2}}$and ${{R}_{3}}$ simultaneously, using operations ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$ and ${{R}_{3}}\to {{R}_{3}}-2{{R}_{1}}$, we get –
$\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & -3 & -5 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1 \\
\end{matrix} \right]$
Operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to {{R}_{3}}+\dfrac{3}{2}{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & -\dfrac{1}{2} \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
-\dfrac{1}{2} & \dfrac{3}{2} & 1 \\
\end{matrix} \right]\]
Again operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to \dfrac{{{R}_{3}}}{-\dfrac{1}{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Now operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}-{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & -2 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
0 & -1 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}+2{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to \dfrac{{{R}_{2}}}{2}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & \dfrac{3}{2} \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
\dfrac{1}{2} & \dfrac{1}{2} & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
At last operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to {{R}_{2}}-\dfrac{3}{2}{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Hence, we have got \[I{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Since,\[IA=AI=A\], therefore, \[{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\], which is our required answer.
Note: Students should know that while using elementary transformations, if we are using row transformation, then we have to use rows only. We cannot use column transformation in between. Also, we are not allowed to alter any row, for example, we cannot write ${{R}_{2}}\to {{R}_{1}}+{{R}_{3}}$. Also, the row which is to be transformed should come first in the equation, meaning we cannot write ${{R}_{2}}\to {{R}_{1}}-{{R}_{2}}$. We can only write ${{R}_{2}}\to {{R}_{2}}-{{R}_{1}}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Give simple chemical tests to distinguish between the class 12 chemistry CBSE

How was the Civil Disobedience Movement different from class 12 social science CBSE

India is the secondlargest producer of AJute Bcotton class 12 biology CBSE

Define peptide linkage class 12 chemistry CBSE

How is democracy better than other forms of government class 12 social science CBSE

Differentiate between lanthanoids and actinoids class 12 chemistry CBSE
