Find the inverse of matrix $\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]$ by elementary row transformation.
Answer
Verified
466.8k+ views
Hint: In this question, we will first find the determinant of the matrix to check if its inverse exists. If the determinant is non-zero, only then will we proceed further. After that, we will use elementary row transformations to find the inverse of the matrix. We will use various operations step by step to reach our answer.
Complete step-by-step solution
We are given the matrix $A=\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]$ . Let us find the determinant of the matrix.
$\begin{align}
& \left| A \right|=1\left( 0-2 \right)-2\left( 3-4 \right)+1\left( -1-0 \right) \\
& =-2+2-1 \\
& =-1\ne 0 \\
\end{align}$
Hence, the inverse of the $A$ matrix exists.
Now as we know $A{{A}^{-1}}=I$, so let us put the value of $A$ and $I$ , where $I$is $3\times 3$ identity matrix.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now we apply various row transformations to make $A$ as $I$ and hence find our answer.
${{R}_{1}}$ will represent row $1$.
${{R}_{2}}$ will represent row $2$.
${{R}_{3}}$ will represent row $3$.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Operating of ${{R}_{2}}$and ${{R}_{3}}$ simultaneously, using operations ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$ and ${{R}_{3}}\to {{R}_{3}}-2{{R}_{1}}$, we get –
$\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & -3 & -5 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1 \\
\end{matrix} \right]$
Operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to {{R}_{3}}+\dfrac{3}{2}{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & -\dfrac{1}{2} \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
-\dfrac{1}{2} & \dfrac{3}{2} & 1 \\
\end{matrix} \right]\]
Again operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to \dfrac{{{R}_{3}}}{-\dfrac{1}{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Now operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}-{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & -2 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
0 & -1 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}+2{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to \dfrac{{{R}_{2}}}{2}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & \dfrac{3}{2} \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
\dfrac{1}{2} & \dfrac{1}{2} & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
At last operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to {{R}_{2}}-\dfrac{3}{2}{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Hence, we have got \[I{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Since,\[IA=AI=A\], therefore, \[{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\], which is our required answer.
Note: Students should know that while using elementary transformations, if we are using row transformation, then we have to use rows only. We cannot use column transformation in between. Also, we are not allowed to alter any row, for example, we cannot write ${{R}_{2}}\to {{R}_{1}}+{{R}_{3}}$. Also, the row which is to be transformed should come first in the equation, meaning we cannot write ${{R}_{2}}\to {{R}_{1}}-{{R}_{2}}$. We can only write ${{R}_{2}}\to {{R}_{2}}-{{R}_{1}}$.
Complete step-by-step solution
We are given the matrix $A=\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]$ . Let us find the determinant of the matrix.
$\begin{align}
& \left| A \right|=1\left( 0-2 \right)-2\left( 3-4 \right)+1\left( -1-0 \right) \\
& =-2+2-1 \\
& =-1\ne 0 \\
\end{align}$
Hence, the inverse of the $A$ matrix exists.
Now as we know $A{{A}^{-1}}=I$, so let us put the value of $A$ and $I$ , where $I$is $3\times 3$ identity matrix.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Now we apply various row transformations to make $A$ as $I$ and hence find our answer.
${{R}_{1}}$ will represent row $1$.
${{R}_{2}}$ will represent row $2$.
${{R}_{3}}$ will represent row $3$.
$\left[ \begin{matrix}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]$
Operating of ${{R}_{2}}$and ${{R}_{3}}$ simultaneously, using operations ${{R}_{2}}\to {{R}_{2}}+{{R}_{1}}$ and ${{R}_{3}}\to {{R}_{3}}-2{{R}_{1}}$, we get –
$\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & -3 & -5 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1 \\
\end{matrix} \right]$
Operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to {{R}_{3}}+\dfrac{3}{2}{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & -\dfrac{1}{2} \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
-\dfrac{1}{2} & \dfrac{3}{2} & 1 \\
\end{matrix} \right]\]
Again operating on ${{R}_{3}}$ using operations, \[{{R}_{3}}\to \dfrac{{{R}_{3}}}{-\dfrac{1}{2}}\], we get –
\[\left[ \begin{matrix}
1 & 2 & 1 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Now operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}-{{R}_{2}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & -2 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
0 & -1 & 0 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{1}}$ using operations, \[{{R}_{3}}\to {{R}_{1}}+2{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 2 & 3 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
1 & 1 & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to \dfrac{{{R}_{2}}}{2}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & \dfrac{3}{2} \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
\dfrac{1}{2} & \dfrac{1}{2} & 0 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
At last operating on ${{R}_{2}}$ using operations, \[{{R}_{2}}\to {{R}_{2}}-\dfrac{3}{2}{{R}_{3}}\], we get –
\[\left[ \begin{matrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right]{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Hence, we have got \[I{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\]
Since,\[IA=AI=A\], therefore, \[{{A}^{-1}}=\left[ \begin{matrix}
2 & -7 & -4 \\
-1 & 5 & 3 \\
1 & -3 & -2 \\
\end{matrix} \right]\], which is our required answer.
Note: Students should know that while using elementary transformations, if we are using row transformation, then we have to use rows only. We cannot use column transformation in between. Also, we are not allowed to alter any row, for example, we cannot write ${{R}_{2}}\to {{R}_{1}}+{{R}_{3}}$. Also, the row which is to be transformed should come first in the equation, meaning we cannot write ${{R}_{2}}\to {{R}_{1}}-{{R}_{2}}$. We can only write ${{R}_{2}}\to {{R}_{2}}-{{R}_{1}}$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
Differentiate between internal fertilization and external class 12 biology CBSE
Which animal never drinks water in its entire life class 12 biology CBSE