Find the length of the tangent drawn from a point whose distance from the center of a circle is 25 cm. Given that the radius of the circle is 7 cm.
Answer
Verified
510k+ views
Hint: Draw a rough figure of the tangent meeting the circle. The tangent to a circle is always perpendicular to the radius through the point of contact. You will get a right angled triangle. Solve it and find the length of the tangent drawn.
Complete step-by-step answer:
Let us consider ‘O’ as the center of the circle. Consider the figure drawn.
Let OT be the radius of the circle.
\[\therefore \]OT = 7 cm.
Let P be the point from which the tangent is drawn to the circle. The tangent meets at point T on the circle. Given that the length from point P to the center O of the circle is 25 cm.
\[\therefore \]Length of OP = 25 cm.
What we need to find is the length of PT.
From the figure, we can assume that radius OT is perpendicular to the tangent drawn, i.e. the tangent to a circle is always perpendicular to the radius through the point of contact.
\[\therefore \angle OTP={{90}^{\circ }}\]
Now let us consider the right angled triangle OTP.
By basic geometry we know that,
\[O{{P}^{2}}=P{{T}^{2}}+O{{T}^{2}}\]i.e.\[{{\left( hypotenuse \right)}^{2}}={{\left( altitude \right)}^{2}}+{{\left( base \right)}^{2}}\]
\[\begin{align}
& \therefore P{{T}^{2}}=O{{P}^{2}}-O{{T}^{2}} \\
& PT=\sqrt{O{{P}^{2}}-O{{T}^{2}}} \\
& PT=\sqrt{{{25}^{2}}-{{7}^{2}}}=\sqrt{625-49}=24cm \\
\end{align}\]
Hence, the length of tangent from point P = 24 cm.
Note: There are a lot of special properties for a tangent to a circle, like a tangent can never cross the circle. It can only touch the circle, like how we have drawn in the figure. At the point of tangency, it is perpendicular to the radius. Therefore, we took angle OTP as \[{{90}^{\circ }}\]. So when you get a question related to tangents, remember both the points.
Complete step-by-step answer:
Let us consider ‘O’ as the center of the circle. Consider the figure drawn.
Let OT be the radius of the circle.
\[\therefore \]OT = 7 cm.
Let P be the point from which the tangent is drawn to the circle. The tangent meets at point T on the circle. Given that the length from point P to the center O of the circle is 25 cm.
\[\therefore \]Length of OP = 25 cm.
What we need to find is the length of PT.
From the figure, we can assume that radius OT is perpendicular to the tangent drawn, i.e. the tangent to a circle is always perpendicular to the radius through the point of contact.
\[\therefore \angle OTP={{90}^{\circ }}\]
Now let us consider the right angled triangle OTP.
By basic geometry we know that,
\[O{{P}^{2}}=P{{T}^{2}}+O{{T}^{2}}\]i.e.\[{{\left( hypotenuse \right)}^{2}}={{\left( altitude \right)}^{2}}+{{\left( base \right)}^{2}}\]
\[\begin{align}
& \therefore P{{T}^{2}}=O{{P}^{2}}-O{{T}^{2}} \\
& PT=\sqrt{O{{P}^{2}}-O{{T}^{2}}} \\
& PT=\sqrt{{{25}^{2}}-{{7}^{2}}}=\sqrt{625-49}=24cm \\
\end{align}\]
Hence, the length of tangent from point P = 24 cm.
Note: There are a lot of special properties for a tangent to a circle, like a tangent can never cross the circle. It can only touch the circle, like how we have drawn in the figure. At the point of tangency, it is perpendicular to the radius. Therefore, we took angle OTP as \[{{90}^{\circ }}\]. So when you get a question related to tangents, remember both the points.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE